Integers

Chapter 1

1.1 Introduction

We have learnt about whole numbers and integers in Class VI. We know that integers form a bigger collection of numbers which contains whole numbers and negative numbers. What other differences do you find between whole numbers and integers? In this chapter, we will study more about integers, their properties and operations. First of all, we will review and revise what we have done about integers in our previous class.

1.2 Recall

We know how to represent integers on a number line. Some integers are marked on the number line given below.

Can you write these marked integers in ascending order? The ascending order of these numbers is $-5,-1,-3$. Why did we choose -5 as the smallest number?

Some points are marked with integers on the following number line. Write these integers in descending order.

TRY THESE

1. A number line representing integers is given below

$$
\begin{array}{ll}
-3 & -2
\end{array}
$$

-3 and -2 are marked by E and F respectively. Which integer are marked B, $\mathrm{D}, \mathrm{H}, \mathrm{J}, \mathrm{M}$ and O ?
2. Arrange 7, $-5,4,0$ and -4 in ascending order and then mark them on a number line to check your answer

We have done addition and subtraction in our previous class. Read the following statements.

On a number line when we
(i) add a positive integer, we move to the right.
(ii) add a negative integer, we move to the left.
(iii) subtract a positive integer, we move to the left.
(iv) Subtract a negative integer, we move to the right.

State whether the following statements are correct or incorrect. Correct those which are wrong:
(i) When two positive integers are added we get a positive integer.
(ii) When two negative integers are added we get a positive integer.
(iii) When a positive integer and a negative integer are added, we always get a negative integer.
(iv) Additive inverse of an integer 8 is (-8) and additive inverse of (-8) is 8 .
(v) For the subtraction, we add the additive inverse of the integer that is being subtracted, to the other integer.
(vi) $\quad(-10)+3=10-3$
(vii) $8+(-7)-(-4)=8+7-4$

Compare your answers with the answers given below:
(i) Correct. For example:
(a) $56+73=129$
(b) $113+82=195$ etc.

Construct five more examples in support of this statement.
(ii) Incorrect, since $(-6)+(-7)=-13$, which is not a positive integer. The correct statement is: When two negative integers are added we get a negative integer.

For example,
(a) $(-5)+(-73)=-129$
(b) $(-113)+(-82)=-195$, etc.

Construct five more examples on your own to verify this statement.
(iii) Incorrect, since $-9+19=7$, which is not a negative integer. The correct statement is: When one positive and one negative integers are added, we take their difference and place the sign of the bigger integer. The bigger integer is decided by ignoring the signs of both the integers. For example:
(a) $(-56)+(73)=17$
(b) $(-113)+82=-31$
(c) $16+(-23)=-7$
(d) $125+(-101)=24$

Construct five more examples of for verifying this statement.
(iv) Correct. Some other examples of additive inverse are as given below:

Thus, the additive inverse of any integer a is $-a$ and additive inverse of $(-a)$ is a.
(v) Correct. Subtraction is opposite of addition and therefore, we add the additive inverse of the integer that is being subtracted, to the other integer.
For example :
(a) $56-73=56+$ additive inverse of $73=56+(-73)=-17$
(b) $56-(-73)=56+$ additive inverse of $(-73)=56+73=129$
(c) $(-79)-45=(-79)+(-45)=-124$
(d) $(-100)-(-172)=-100+72=72$ etc.

Write atleast five such examples to verify this statement.
Thus, we find that for any two integers a and b,

$$
a-b=a+\text { additive inverse of } b=a=(-b)
$$

and
(vi) Incorrect, since

Therefore ,
$a-(-b)=a+$ additive inverse of $(-b)=a+b$
$(-10)+3=-7$ and $10-3=7$
$(-10)+3 \neq 10-3$
(vii) Incorrect, since
$8+(-7)-(-4)=8+(-7)+4=1+4=5$
and
$8+7-4=15-4=11$
However,
$8+(-7)-(-4)=8-7+4$

TRY THESE

We have done various patterns with numbers in our previous class.
Can you find a pattern for each of the following? If yes, complete them:
(a) $7,3,-1,-5$, \qquad , \qquad , \qquad -
(b) $-2,-4,-6,-8$, \qquad , \qquad , \qquad .
(c) $15,10,5,0$, \qquad , \qquad .
(d) $-11,-8,-5,-2$, \qquad
\qquad , \qquad .

Make some more such patterns and ask your friends to complete them

Exercise 1.1

1. Following number line shows the temperature in degree celsius $\left({ }^{\circ} \mathrm{C}\right)$ at different places on a particular day.

(a) Observe this number line and write the temperature of the places marked on it.
(b) What is the temperature difference between the hottest and the coldest places among the above?
(c) What is the temperature difference between Lahulspiti and Srinagar?
(d) Can we say temperature of Srinagar and Shimla taken together is less than the temperature at Shimla? Is it also less than the temperature at Srinagar?
2. In a quiz, positive marks are given for correct answers and negative marks are given for incorrect answers. If Arif scores in five successive rounds were $25,-5$, $-10,15$ and 10 , what was his total at the end?
3. At Srinagar temperature was $-5^{\circ} \mathrm{C}$ on Monday and
 then it dropped by $2^{\circ} \mathrm{C}$ on Tuesday. What was the temperature of Srinagar on Tuesday? On Wednesday, it rose by $4^{\circ} \mathrm{C}$. What was the temperature on this day?
4. A plane is flying at the height of 5000 m above the sea level. At a particular point, it is exactly above a submarine floating 1200 m below the sea level. What is the vertical distance between them?
5. Babloo deposits Rs 2,000 in his bank account and withdraws Rs 1,642 from it, the next day. If withdrawal of amount from the account is represented by a negative integer, then how will you represent the amount deposited? Find the balance in Babloo‘s account after the withdrawal.
6. Maria goes 20 KM towards east from a point A to the point B. from B. she moves 30 KM towards west along the same road. If the distance towards east is represented by a positive integer then, how will you represent the distance travelled towards west? By which integer will you represent her final position from A?

7. In a magic square each row, column and diagonal have the same sum. Check which of the following is a magic square.

8. Verify $a-(-b)=a+b$ for the following values of a and b.
(i) $a=21, b=18$
(ii) $a=118, b=125$
(iii) $a=75, b=84$
(iv) $a=28, b=11$
9. Use the sign of $>,<$ or $=$ in the box to make the statement true.
(a) $(-8)+(-4)$

$$
(-8)-(-4)
$$

(b) $(-3)+7-(19)$

$$
15-8+(-9)
$$

(c) $23-41+11$

$$
23-41-11
$$

(d) $39+(-24)-(15)$

$$
36+(-52)-(-36)
$$

(e) $-231+79+51$

$$
-399+159+81
$$

10. A water tank has steps inside it. A monkey sitting on the topmost step (i.e., the first step). The water level is at the ninth step.
(i) He jumps 3 steps down and then jumps back 2 steps up. In how many jumps will he reach the water level?
(ii) After drinking water, he wants to go back. For this, he jumps 4 steps up and then jumps back 2 steps down in every move. In how many jumps will he reach back the top step?
(iii) If the number of steps moved down is represented by negative integers and the number of steps moved up by positive integers, represent his moves in part (i) and (ii) by completing the following; (a) $-3+2-\ldots=-8$ (b) $4-2+\ldots=8$. In (a) the sum (-8) represents going down by eight steps. So, what will the sum 8 in (b) represent?

1.3 PROPERTIES OF ADDITION AND SUBTRACTION OF INTEGER

1.3.1 Closure under Addition

We have learnt that sum of two whole numbers is again a whole number. For example, $17+24=41$ which is again a whole number. We know that, this property is known as the closure property for addition of the whole numbers.
Let us see whether this property is true for integers or not.
Following are some pairs of integers. Observe the following table and complete it.

Statement

(i) $17+23=40$
(ii) $(-10)+3=$ \qquad
(iii) $(-75)+18=$ \qquad
(iv) $19+(-25)=-6$
(v) $27+(-27)=$ \qquad
(vi) $(-20)+0=$ \qquad
(vii) $(-35)+(-10)=$ \qquad

What do you observe? Is the sum of two integers always an integer?
Did you find a pair of integers whose sum is not an integer?

Since addition of integers gives integers, we say integers are closed under addition. In general, for any two integers a and $b, a+b$ is an integer

1.3.2 Closure under Subtraction

What happens when we subtract an integer from another integer? Can we say that their difference is also an integer?

Observe the following table and complete it:
Statement
(i) $7-9=-2$
(ii) $17-(-21)=$ \qquad
(iii) $(-8)-(-14)=16$
(iv) $(-21)-(-10)=$ \qquad
(v) $32-(-17)=$ \qquad
(vi) $(-18)-(-18)=$ \qquad
(vii) $(-29)-0=$ \qquad

Observation

Result is an integer
\qquad
Result is an integer
\qquad
\qquad
\qquad
$\underline{\square}$

What do you observe? Is there any pair of integers whose difference is not an integer? Can we say integers are closed under subtraction? Yes, we can see that integers are closed under subtraction.

Thus, if $a a n d b$ are two integers then $a-b$ is also an integer. Do the whole numbers satisfy this property?

1.3.3 Commutative Property

We know that $3+5=5+3=8$, that this, the whole numbers can be added in any order. In other words, addition is commutative for whole numbers.

Can we say the same for integers also?
We have $5+(-6)=-1$ and $(-6)+5=-1$
So, $5+(-6)=(-6)+5$

Are the following equal?
(i) $(-8)+(-9)$ and $(-9)+(-8)$
(ii) $(-23)+32$ and $32+(-23)$
(iii) $(-45)+0$ and $0+(-45)$

Try this with five pair of integers. Do you find any pair of integers for which the sums are different when the order is changed? Certainly not. Thus, we conclude that addition is commutative for integers.

In general, for any two integers a and b, we can say

$$
a+b=b=a
$$

- We know that subtraction is not commutative for whole numbers. Is it commutative for integers?

Consider the integers 5 and (-3).
Is $5-(-3)$ the same as $(-3)-5$? No, because $5-(-3)=5+3=8$, and $(-3)-5=-3-5=-8$.

Take atleast five different pairs of integers and check this.
We conclude that subtraction is not commutative for integers.

1.3.4 Associative Property

Observe the following examples:
Consider the integers $-3,-2$ and -5 .
Look at $(-5)=[(-3)+(-2)$ and $[(-5)+(-3)]+(-2)$.
In the first sum (-3) and (-2) are grouped together and in the second (-5) and (-3) are grouped together. We will check whether we get different results.

In both the cases, we get -10 .
i.e., $\quad(-5)=[(-3)+(-2)]=[(-5)+(-2)]+(-3)$

Similarly consider $-3,1$ and -7 .
$(-3)+[1+(-7)]=-3+$ \qquad $=$
$[(-3)+1]+(-7)=-2+$ \qquad
\qquad
Is $(-3)+[1+(-7)]$ same as $[(-3+1]+(-7)$?
Take five more such examples. You will not find any example for which the sums are different. This shows that addition is associative for integers.

In general for any integers $a, b a n d c$, we can say

$$
a+(b+c)=(a+b)=c
$$

1.3.5 Additive Identity

When we add zero to any whole number, we get the same whole number. Zero is an additive identity for whole numbers. Is it in additive identity again for integers also?

Observe the following and fill in the blanks:
(i) $(-8)+0=-8$
(ii) $0+(-8)=-8$
(iii) $(-23)+0=$
(iv) $0+(-37)=-37$
(v) $0+(-59)=$ \qquad (vi) $0+\ldots=-43$
(vii) $-61+$ \qquad $=-61$
(viii) \qquad $+0=$ \qquad
The above example shows that zero is an additive identity for integers.
You can verify it by adding zero to any other five integers.
In general, for any integer a

$$
a+0=a=0+a
$$

TRY THESE

1. Write a pair of integers whose sum gives
(a) a negative integer
(b) zero

(c) an integer smaller than both the integers.(d) an integer smaller than only one of the integers.
(e) an integer greater than both the integers.
2. Write a pair of integers whose difference gives
(a) a negative integer
(b) zero
(c) an integer smaller than both the integers
(d) an integer greater than only one of the integers.
(e) an integer greater than both the integers.

EXAMPLE 1 Write down a pair of integers whose
(a) sum is -3
(b) difference is - 5
(c) difference is 2
(d) sum is 0

SOLUTION

(a) $(-1)+(-2)=-3$ or $(-5)+2=-3$
(b) $(-9)-(-4)=-5$ or $(-2)-3=-5$

(c) $(-7)-(-9)=2$ or $1-(-1)=2$
(d) $(-10)+10=0$ or $5+(-5)=0$

Exercise 1.2

1. Write down a pair of integers whose:
(a) sum is -7
(b) difference is -10
sum is 0
2. (a) Write a pair of integers whose difference is 8 .
(b) Write a negative integer and a positive integer whose sum is -5 .
(c) Write a negative integer and a positive integer whose difference is -3 .
3. In a Mathematics quiz programme, Team A scored; - 30, 20, 10, 0 and Team B scored; 10, 10, $0,-40$ in four consecutive rounds. Which team scored more? Can we say that we can add integers in any order.
4. Fill in the blanks to make the following statement true:
(i) $(-5)+(-8)=(-8)+(\ldots \ldots)$
(ii) $-58+\ldots . .=-52$
(iii) $-19+\ldots \ldots=0$
(iv) $[10+(-13)]+(\ldots .)=.10+[(-13)+(-7)]$

(v) $(-2)+[14+(-5)]=[-2+14]+\ldots \ldots$

1.4 MULTIPLICATION OF INTEGERS

We can add and subtract integers. Let us now learn how to multiply integers.

1.4.1 Multiplication of a Positive and a Negative Integer

We know that multiplication of whole numbers is repeated addition. For example,

$$
5+5+5=3 \times 5=15
$$

Can you represent addition integers in the same way?
TRY THESE We have from the following number line, $(-5)+(-5)+(-5)=-15$
Find:
$5 \times(-8)$
$8 \times(-2)$
$10 \times(-1)$
Using number line

But we can also write

$$
(-5)+(-5)+(-5)=3 \times(-5)
$$

Therefore, $\quad 3 \times(-5)=-15$

$$
\text { Similarly } \quad(-4+(-4)+(-4)+(-4)+(-4)=5 \times(-4)=-20
$$

And
Also,

$$
(-3)+(-3)+(-3)+(-3)=
$$

Let us see how to find the product of a positive integer and a negative integer without using number line.

Let us find $3 \times(-5)$ in a different way. First find 3×5 and then put minus sign (-) before the product obtained. You get -15 . That is we find $-(3 \times 5)=-15$.

Similarly,

$$
5 \times(-4)=-(5 \times 4)=-20
$$

Find in a similar way,

$$
\begin{aligned}
& 4 \times(-8)=\square= \\
& 6 \times(-5)=\square=\square
\end{aligned}=
$$

Using these methods we thus have,

$$
10 \times(-43)=\quad-(10 \times 43)=-430
$$

TRY THESE

Find:
(i) $6 \times(-19)$
(ii) $12 \times(-32)$
(iii) $7 \times(-22)$ To find this, observe the following pattern:

We have,

So,

$$
\begin{aligned}
& 3 \times 5=15 \\
& 2 \times 5=10=15-5 \\
& 1 \times 5=5=10-5 \\
& 0 \times 5=5=5-5 \\
&-1 \times 5=0-5=-5 \\
&-2 \times 5=-5-5=-10 \\
&-3 \times 5=-10-5=-15
\end{aligned}
$$

We already have

$$
3 \times(-5)=-15
$$

So we get

$$
(-3) \times 5=-15=3 \times(-5)
$$

Using such pattern, we also get $(-5) \times 4=-20=5 \times(-4)$
Using patterns find $(-4) \times 8,(-3) \times 7,(-6) \times 5$ and $(-2) \times 9$
Check whether, $(-4) \times 8=4 \times(-8),(-3) \times 7=3 \times(-7),(-6) \times 5=6 \times(-5)$
and
$(-2) \times 9=2 \times(-9)$
Using this we get, $\quad(-33) \times 5=33 \times(-5)=-165$
We thus find that while multiplying a positive integer and a negative integer, we multiply them as whole numbers and put a minus sign (-) before the product. We thus get a negative integer.

TRY THESE

1. Find: (a) $15 \times(-16)$
(b) $21 \times(-32)$
(c) $(-42) \times 12$
(d) -55×15
2. Check if (a) $25 \times(-21)=(-25) \times 21$
(b) $(-23) \times 20=23 \times(-20)$

Write five more such examples.
In general, for any two positive integers a and b we can say

$$
a \times(-b)=(-a) \times b=-(a \times b)
$$

1.4.2 Multiplication of two Negative Integers

Can you find the product $(-3) \times(-2)$?
Observe the following:

$$
\begin{aligned}
& -3 \times 4=-12 \\
& -3 \times 3=-9=-12-(-3) \\
& -3 \times 2=-6=-9-(-3) \\
& -3 \times 1=-3=-6-(-3) \\
& -3 \times 0=0=-3-(-3) \\
& -3 \times-1=0-(-3)=0+3=3 \\
& -3 \times-2=3-(-3)=3+3=6
\end{aligned}
$$

Do you see any pattern? Observe how the products change.
Based on this observation, complete the following:
$-3 \times-3=$ \qquad $-3 \times-4=$
Now observe these products and fill in the blanks:
$-4 \times 4=-16$
$-4 \times 3=-12=-16+4$
$-4 \times 2=$ \qquad $=-12+4$
$-4 \times 1=$ \qquad
$-4 \times 0=$ \qquad
$-4 \times(-1)=$ \qquad
$-4 \times(-2)=$ \qquad

TRY THESE	
(i)	Starting from $(-5) \times 4$, find $(-5) \times(-6)$
(ii)	Starting from $(-6) \times 3$, find $(-6) \times(-7)$

$-4 \times(-3)=$ \qquad
From these patterns we observe that,

$$
\begin{aligned}
& (-3) \times(-1)=3=3 \times 1 \\
& (-3) \times(-2)=6=3 \times 2 \\
& (-3) \times(-3)=9=3 \times 3
\end{aligned}
$$

And

$$
(-4) \times(-1)=4=4 \times 1
$$

So,

$$
(-4) \times(-2)=4 \times 2=
$$

\qquad
$(-4) \times(-3)=$ \qquad $=$ \qquad
So observing these products we can say that the product of two negative integers is a positive integer. We multiply the two negative integers as whole numbers and put the positive sign before the product.

Thus, we have

$$
(-10) \times(-12)=120
$$

Similarly

$$
(-15) \times(-6)=90
$$

In general, for any two positive integers a and b,

$$
(-a) \times(-b)=a \times b
$$

1.4.3 Product of three or more Negative Integers

Euler in his book
Ankitung zur
Algebra (1770), was one of the first mathematicians to attempt to prove $(-1) \times(-1)=1$

We observed that the product of two negative integers is a positive integer.

What will be the product of three negative integers? Four negative integers?

Let us observe the following examples:
(a) $(-4) \times(-3)=12$
(b) $(-4) \times(-3) \times(-2)=[(-4) \times(-3)] \times(-2)=12 \times(-2)=-24$
(c) $(-4) \times(-3) \times(-2) \times(-1)=[(-4) \times(-3) \times(-2)] \times(-1)=(-24) \times(-1)$
(d) $(-5) \times[(-4) \times(-3) \times(-2) \times(-1)]=(-5) \times 24=-120$

From the above products we observe that
(a) the product of two negative integers is a positive integer;
(b) the product of three negative integers is a negative integer.
(c) product of four negative integers is a positive integer.
What is the product of five negative integers in (d)?

So what will be the product of six negative integers?

We further see that in (a) and (c) above, the number of negative integers that are multiplied are even [two and four respectively] and the product obtained in (a) and (c) are positive integers. The number of negative integers that are multiplied in (b) and (d) is odd and the products obtained in (b) and (d) are negative integers.

We find that if the number of negative integers in a product is even, then the product is a positive integer; if the number of negative integers in a product is odd, then the product is a negative integer.

Justify it by taking five more examples of each kind.

Think, DISCUSS and WRITE

(i)

The product $(-9) \times(-5) \times(-6) \times(-3)$ is positive whereas the product $(-9) \times(-5) \times 6 \times(-3)$ is negative. Why?
(ii) What will be the sign of the product if we multiply together:
(a) 8 negative integers and 3 positive integers?
(b) 5 negative integers and 4 positive integers?
(c) (-1), twelve times?
(d) $(-1), 2 m$ times, m is a natural number?

1.5 PROPERTIES OF MULTIPLICATION OF INTEGERS

1.5.1 Closure under Multiplication

1. Observe the following table and complete it:

Statement	Inference
$(-20) \times(-5)=100$	Product is an integer
$(-15) \times 17=-255$	Product is an integer
$(-30) \times 12=_$	
$(-15) \times(-23)=_$	
$(-14) \times(-13)=-$	
$12 \times(-13)=$	

What do you observe? Can you find a pair of integers whose product is not an integer? No. This gives us an idea that the product of two integers is again an integer. So we can say that two integers are closed under multiplication. In general,

$a \times b$ is an integer, for all integers a and b

Find the product of five more pairs of integers and verify the above statement.

1.5.2 Commutativity of Multiplication

We know that multiplication is commutative for whole numbers. Can we say, multiplication is also commutative for integers?

Observe the following table and complete it:

Statement 1	Statement 2	Inference
$3 \times(-4)=-12$	$(-4) \times 3=-12$	$3 \times(-4)=(-4) \times 3$
$(-30) \times 12=$	$12 \times(-30)=$	
$(-15) \times(-10)=150$	$(-10) \times(-15)=150$	
$(-35) \times(-12)=$	$(-12) \times(-35)=$	
$(-17) \times 0=$	$(-1) \times(-15)=$	
-	$=$	

What are your observations? The above examples suggest multiplication is commutative for integers. Write five more such examples and verify.

In general, for two integers a and b,

$$
a \times b=b \times a
$$

1.5.3 Multiplication by Zero

We know that any whole number when multiplied by zero gives zero. Observe the following products of negative integers and zero. These are obtained from the pattern done earlier.
$(-3) \times 0=0$
$0 \times(-4)=0$
$-5 \times 0=$
$0 \times(-6)=$
This shows that the product of a negative integer and zero is zero
In general, for any integer a

$$
a \times 0=0 \times a=0
$$

1.5.4 Multiplicative Identity

We know that 1 is the multiplicative identity for whole numbers.
Check that 1 is the multiplicative identity for integers as well. Observe the following products of integers with 1 .
$(-3) \times 1=-3$
$1 \times 5=5$
$(-4) \times 1=$ \qquad $1 \times 8=$
$3 \times 1=$ \qquad
$1 \times(-6)=$ \qquad $7 \times 1=$ \qquad
This shows that 1 is the multiplicative identity for integers also.

In general, for any integer a we have,

$$
a \times 1=1 \times a=a
$$

What happens when we multiply any integer with -1 ? Complete the following:
$(-3) \times(-1)=3$
$3 \times(-1)=-3$
$(-6) \times(-1)=$ \qquad
$(-1) \times 13=$ \qquad
$(-1) \times(-25)=$ \qquad

0 is the additive identity whereas 1 is the multiplicative identity for integers. We get additive inverse of an integer a when we multiply (-1) to a, i.e. $a \times(-10=(-1) \times a=-a$
$18 \times(-1)=$ \qquad
What do you observe?
Can we say -1 is a multiplicative identity of integers? No.

1.5.5 Associativity for Multiplication

Consider $-3,-2$ and 5 .
Look at $[(-3) \times(-2)] \times 5$ and $(-3) \times[(-2) \times 5]$
In the first case (-3) and (-2) are grouped together and in the second (-2) and 5 are grouped together.

We see that $[(-3) \times(-2)] \times 5=6 \times 5=30$
and

$$
(-3) \times[(-2) \times 5]=(-3) \times(-10)=30
$$

So, we get the same answer in both the cases.
Thus, $\quad[(-3) \times(-2)] \times 5=(-3) \times[(-2) \times 5]$
Look at this and complete the products:
$[(7) \times(-6)] \times 4=$ \qquad $\times 4=$ \qquad
$7 \times[(-6) \times 4]=7 \times$ \qquad $=$ \qquad
Is $[7 \times(-6)] \times 4=7 \times[(-6) \times 4]$?
Does the grouping of integers affect the product of integers? No.

In general, for any three integers a, b and c

$$
(a \times b) \times c=a \times(b \times c)
$$

Take any five values for a, b and c each and verify this property. Thus, like whole numbers, the product of three integers does not depend upon the grouping of integers and this is called the associative property for multiplication of integers.

1.5.6 Distributive Property

We know
$16 \times(10+2)=(16 \times 10)+(16 \times 2) \quad$ [Distributivity of multiplication over addition] Let us check if this is true for integer also.

Observe the following:
(a) $(-2) \times(3+5)=-2 \times 8=-16$ and $[(-2) \times 3]+[(-2) \times 5]=(-6)+(-10)=-16$
So, $\quad(-2) \times(3+5)=[(-2) \times 3]+[(-2) \times 5]$
(b) $(-4) \times[(-2)+7]=(-4) \times 5=-20$
and $[(-4) \times(-2)]+[(-4) \times 7]=8+(-28)=-20$
So, $\quad(-4) \times[(-2)+7]=[(-4) \times(-2)]+[(-4) \times 7]$
(c) $(-8) \times[(-2)+(-1)]=(-8) \times(-3)=24$
and $[(-8) \times(-2)]+[(-8) \times(-1)=16+8=24$
So, $\quad(-8) \times[(-2)+(-1)]=[(-8) \times(-2)]+[(-8) \times(-1)]$
Can we say that the Distributivity of multiplication over addition is true for integers also? Yes.

In general, for any integers a, b and c

$$
a \times(b+c)=a \times b+a \times c
$$

Take atleast five different values for each a, b and c and verify the above Distributive property.

TRY THESE

(i) Is $10 \times[(6+(-2)]=10 \times 6+10 \times(-2)$?
(ii) Is $(-15) \times[(-7)+(-1)]=(-15) \times(-7)+(-15) \times(-1)$?

Now consider the following:
Can we say $4 \times(3-8)=4 \times 3-4 \times 8$?
Let us check:

$$
\begin{aligned}
& 4 \times(3-8)=4 \times(-5)=-20 \\
& 4 \times 3-4 \times 8=12-32=-20 \\
\text { So, } & 4 \times(3-8)=4 \times 3-4 \times 8
\end{aligned}
$$

Look at the following:

$$
\begin{aligned}
& (-5) \times[(-4)-(-6)]=(-5) \times 2=-10 \\
& {[(-5) \times(-4)]-[(-5) \times(-6)]=20-30=-10}
\end{aligned}
$$

So, $\quad(-5) \times[(-4)-(-6)]=[(-5) \times(-4)]-[(-5) \times(-6)]$
Check this for $(-9) \times[10-(-3)]$ and $[(-9) \times 10]-[(-9) \times(-3)]$
You will find that these are also equal.
In general, for any three integers $a, b a n d c$

$$
a \times(b-c)=a \times b-a \times c
$$

Take atleast five different values for each of a, b and c and verify this property.

TRY THESE
(i) Is $10 \times(6-(-2)]=10 \times 6-10 \times(-2)$?
(ii) \quad Is $(-15) \times[(-7)-(-1]=(-15) \times(-7)-(-15) \times(-1)$?

1.5.7 Making Multiplication Easier

Consider the following:
(i) We can find $(-25) \times 37 \times 4$ as

$$
[(-25) \times 37] \times 4=-3700
$$

Or, we can do it this way,
$(-25) \times 37 \times 4=(-25) \times 4 \times 37=[(-25) \times 4] \times 37=(-100) \times 37=-3700$
Which is the easier way?
Obviously the second way is easier because multiplication of (-25) and 4 gives -100 which is easier to multiply with 37 . Note that the second way involves commutativity and associativity of integers.

So, we find that the commutativity, associativity and Distributivity of integers help to make our calculations simpler. Let us further see how calculations can be made easier using these properties.
(ii) Find 16×12
16×123 can be written as $16 \times(10+2)$ $16 \times 12=16 \times(10+2)=16 \times 10+16 \times 2=160+32=192$
(iii) $\quad(-23) \times 48=(-23) \times[50-2]=(-23) \times 50-(-23) \times 2=(-1150)-(-46)$ $=-1104$
(iv) $\quad(-35) \times(-98)=(-35) \times[(-100)+2]=(-35) \times(-100)+(-35) \times 2$

$$
=3500+(-70)=3430
$$

(v) $52 \times(-8)+(-52) \times 2$

$$
(-52) \times 2 \text { can also be written as } 52 \times(-2) \text {. }
$$

Therefore, $52 \times(-8)+(-52) \times 2=52 \times(-8)+52 \times(-2)$

$$
=52 \times[(-8)+(-2)]=52 \times[(-10)]=-520
$$

TRY THESE
Find $(-49) \times 18 ;(-25) \times(-31) ; 70 \times(-19)+(-1) \times 70$ using distributive property.

Example 2

Find each of the following products:
(i) $(-18) \times(-10) \times 9$
(ii) $(-20) \times(-2) \times(-5) \times 7$
(iii) $(-1) \times(5) \times(-4) \times(-6)$

Solution

(i) $(-18) \times(-10) \times 9=[(-18) \times(-10)] \times 9=180 \times 9=1620$
(ii) $(-20) \times(-2) \times(-5) \times 7=-20(-2 \times-5) \times 7=[-20 \times 10] \times 7=-1400$
(iii) $\quad(-1) \times(-5) \times(-4) \times(-6)=[(-1) \times(-5)] \times[(-4) \times(-6)]=5 \times 24=120$

Example 3

Verify $(-30) \times[(13+(-3)]=[(-30) \times 13]+[(-30) \times(-3)]$

Solution

$(-30) \times[13+(-3)]=(-30) \times 10=-300$
$[(-30) \times 13]+[(-30) \times(-3)]=-390+90=-300$
So, $(-30) \times[13+(-3)]=[(-30) \times 13]+[(-30) \times(-3)]$

Example 4

In a class test containing 15 questions, 4 marks are given for every correct answer and (-2) marks are given for every incorrect answer. (i) Saika attempts all questions but only 9 of answers are correct. What is her total score? (ii) One of her friends gets only 5 answers correct. What will be her score?

Solution

(i) Marks given for one correct answer = 4

So, marks given for 9 correct answers $=4 \times 9=36$
Marks given for one incorrect answer $=-2$

So, marks given for $6=(15-9)$ incorrect answers $=(-2) \times 6=-12$
Therefore, Saika‘s total score $=36+(-12)=24$
(ii) Marks given for one correct answer $=4$

So, marks given for 5 correct answers $=4 \times 5=20$
Marks given for one incorrect answer $=(-2)$
So, marks given for $10(=15-5)$ incorrect answers $=(-2) \times 10=-20$
Therefore, her friend‘s total score $=20+(-20)=0$

Example 5

Suppose we represent the distance above the ground by a positive integer and that below the ground by a negative integer, then answer the following:
(i) An elevator descends into a mine shaft at the rate of 5 metre per minute. What will be its position after one hour?
(ii) If it begins to descend from 15 m above the ground, what will be its position after 45 minutes?

Solution

(i) Since the elevator is going down, so the distance covered by it will be represented by a negative integer.

Change in position of the elevator in one minute $=-5 \mathrm{~m}$
Position of the elevator after 60 minutes $=(-5) \times 60=-300 \mathrm{~m}$, i.e., 300 m below ground level.
(ii) Change in position of the elevator in 45 minutes $=(-5) \times 45=-225 \mathrm{~m}$, i.e., 225 m below ground level.

So, the final position of the elevator $=-225+15=-210 \mathrm{~m}$, i.e., 210 m below ground level.

Exercise 1.3

1. Find each of the following products:
(a) $3 \times(-1)$
(b) $(-1) \times 225$
(c) $(-21) \times(-30)$
(d) $(-316) \times(-1)$
(e) $(-15) \times 0 \times(-18)$
(f) $(-12) \times(-11) \times(10)$
(g) $9 \times(-3) \times(-6)$
(h) $(-18) \times(-5) \times(-4)$
(i) $(-1) \times(-2) \times(-3) \times 4$
(j) $(-3) \times(-6) \times(-2) \times(-1)$
2. Verify the following:
(a) $18 \times[7+(-3)]=[18 \times 7]+[18 \times(-3)]$
(b) $5 \times[7+(-6)]=5 \times 7+5 \times(-6)$
3. (i) For any integer m, what is $(-1) \times m$ equal to?
4. Find the integer whose product with (-1) is
(a) -12
(b) 0
(c) 131
5. Find the product using suitable properties:
(a) $14 \times(-5)+14 \times 7$
(b) $8 \times 53 \times(-121)$
(c) $15 \times(-25) \times(-10) \times(-5)$
(d) $7 \times(50-3)$
(e) $625 \times(-35)+(-625) \times 65$
(f) $(-17 \times(-28)$
(g) $-57 \times(-19)+57$
(h) $(-57) \times(-19)+57$
6. A certain freezing process requires that room temperature be lowered from $40^{\circ} \mathrm{C}$ at the rate of $5^{\circ} \mathrm{C}$ every hour. What will be the room temperature 10 hours after the process begins?
7. In a class test containing 10 questions, 5 marks are awarded for every correct answer and (-2) marks are awarded for every incorrect answer and 0 for questions not attempted.
(i) Arif gets four correct and six incorrect answers. What is his score?
(ii) Maria gets five correct answers and five incorrect answers, what is her score?
(ii) Sabiya gets two correct answers and five incorrect answers out of seven questions she attempts. What is her score?
8. A cement company earns a profit of Rs 8 per bag of white cement sold and a loss of Rs 5 per bag of grey cement sold.
(a) The company sells 3,000 bags of white cement and 5,000 bags of grey cement in a month. What is its profit or loss?
(b) What is the number of white cement bags it must sell to have neither profit nor loss, if the number of grey bags sold is 6,400 bags.
9. Replace the blank with an integer to make it a true statement.
(a) $(-3) \times$ \qquad $=27$
(b) $5 \times \quad=-35$
(c) $\quad \times(-8)=-56$
(d) \qquad $\times(-12)=132$
10. Fill in the blanks
(a) $-4 \times(\ldots)=36$
(b) $5 \times(\ldots \quad)=-45$
(c) $(\ldots \quad) \times(11)=-33$
(d) $(\ldots \quad) \times(11)=-33$

1.6 Division of Integers

We know that division is the inverse operation of multiplication. Let us see an example for whole numbers.

Since $3 \times 5=15$
So $15 \div 5=3$ and $15 \div 3=5$
Similarly, $4 \times 3=12$ gives $12 \div 4=3$ and $12 \div 3=4$

We can say for each multiplication statement of whole numbers there are two division statements.

Can you write multiplication statement and its corresponding division statements for integers?

- Observe the following and complete it.

Multiplication Statement	Corresponding Division Statement	
$2 \times(-6)=(-12)$	$(-12) \div(-6)=2$, $(-12) \div 2=(-6)$
$(-4) \times 5=(-20)$	$(-20) \div(5)=(-4)$, $(-20) \div(-4)=5$
$(-8) \times(-9)=72$	$72 \div$	$72 \div$
$(-3) \times(-7)=$	$\underline{-} \div-3)=$	
$(-8) \times 4=$		
$5 \times(-9)=$		
$(-10) \times(-5)=$		

From the above we observe that:

$$
\begin{aligned}
& (12) \div 2=(-6) \\
& (-20) \div(5)=(-4) \\
& (-32) \div 4=-8 \\
& (-45) \div 5=-9
\end{aligned}
$$

TRY THESE

Find:
(a) $(-100) \div 5$
(b) $(-81) \div 9$
(c) $(-75) \div 5$
(d) $(-32) \div 2$

We observe that when we divide a negative integer by a positive integer, we divide them as whole numbers and then put a minus sign (-) before the quotient. We, thus, get a negative integer.

- We also observe that:

$$
\begin{array}{lll}
72 \div(-8)=-9 & \text { and } & 50 \div(-10)=-5 \\
72 \div(-9)=-8 & & 50 \div(-5)=-10
\end{array}
$$

So we can say that when we divide a positive integer by a negative integer, we first divide them as whole numbers and then put a minus sign (-) before the quotient. That is, we get a negative integer.

Can we say that $(-48) \div 8=48 \div(-8)$?
Let us check. We know that $(-48) \div 8=-6$ and $48 \div(-8)=-6$
So $(-48) \div 8=48 \div(-8)$
Check this for
(i) $90 \div(-45)$ and $(-90) \div 45$
(ii) $(-136) \div 4$ and $136 \div(-4)$

In general, for any two positive integers a and b

$$
\& a \div<b=a \div b \text { where } b \neq 0
$$

TRY THESE

Find: (a) $125 \div(-25)$
(b) $80 \div(-5)$
(c) $64 \div(-16)$

Lastly, we observe that
$(-12) \div(-6)=2 ;(-20) \div(-4)=5 ;(-32) \div(-8)=4 ;(-45) \div(-9)=5$
So, we can say that when we divide a negative integer by a negative integer, we first divide them as whole numbers and then put a positive sign $(+)$. That is, we get a positive integer.

In general, for any two positive integers a and b

$$
(-a) \div(-b)=a \div b \text { where } b \neq a
$$

TRY THESE

Find:
(a) $(-36) \div(-4)$
(b) $(-201) \div(-3)$
(c) $(-325) \div(-13)$

1.7 Properties of Division of Integers

Observe the following table and complete it:

Statement	Interference	Statement	Interference
$(-8) \div(-4)=2$	Result is an integer	$(-8) \div 3=\frac{-8}{3}$	-
$(-4) \div(-8)=\frac{-4}{-8}$ Result is not an integer	$3 \div(-8)=\frac{3}{-8}$	\square	

What do you observe? We observe that integers are not closed under division. Justify it by taking five more examples of your own.

* We know that division is not commutative for whole numbers. Let us check it for integers also.
You can see from the table that $(-8) \div(-4) \neq(-4) \div(-8)$.
Is $(-9) \div 3$ the same as $3 \div(-9)$?
Is $(-30) \div(-6)$ the same as $(-6) \div(-30)$?
Can we say that division is commutative for integers? No.
You can verify it by taking five more pairs of integers.
* Like whole numbers, any integer divided by zero is meaningless and zero divided by an integer other than zero i.e., for any integer $a, a \div 0$ is not defined but $0 \div a=0$ for $a \neq 0$.
* When we divide a whole number by 1 it gives the same whole number. Let us check whether it is true for negative integers also.
Observe the following:

$$
\begin{array}{lll}
(-8) \div 1=(-8) & (-11) \div 1=-11 & (-13) \div 1=-13 \\
(-25) \div 1= & (-37) \div(-1)= & (-48) \div 1=
\end{array}
$$

This shows that negative integer divided by 1 gives the same negative integer. So, any integer divided by 1 gives the same integer.

In general, for any integer a

$$
a \div 1=a
$$

* What happens when we divide any integer by (-1)? Complete the following table

$$
\begin{array}{lll}
(-8) \div(-1)=8 & 11 \div(-1)=-11 & 13 \div(-1)= \\
(-25) \div(-1)= & (-37) \div(-1)= & (-48) \div(-1)=
\end{array}
$$

What do you observe?
We can say that if any integer is divided by (-1) it does not give the same integer.

Can we say $[(-16) \div 4] \div(-2)$ is the same as $(-16) \div[4 \div(-2)]$?
We know that $[(-16) \div 4] \div(-2)=(-4) \div(-2)=2$
and
$(-16) \div[4 \div(-2)]=(-16 \div(-2)=8$
So $\quad[(-16) \div 4] \div(-2) \neq(-16) \div[4 \div(-2)]$
Can we say that division is associative for integers? No.
Verify it by taking five more examples of your own.

Example 6

In a test (+5) marks are given for every correct answer and (-2) marks are given for every incorrect answer.
(i) Rabiya answered all the questions and scored 30 marks though she got 10 correct answers.
(ii) Imtiyaz also answered all the questions and scored (-12) marks though he got 4 correct answers. How many incorrect answers had they attempted?

Solution

(i) Marks given for one correct answer $=5$

So, marks given for 10 correct answers $=5 \times 10=50$
Rabiya's score $=30$
Marks obtained for incorrect answers $=30-50=20$
Marks given for one incorrect answer $=(-2)$
Therefore, number of incorrect answers $=(-20) \div(-2)=10$
(ii) Marks given for four correct answers $=5 \times 4=20$

Imtiyaz's score $=-12$
Marks obtained for incorrect answers $=-12-20=-32$
Marks given for one incorrect answer $=(-2)$
Therefore number of incorrect answers $=(-32) \div(-2)=16$

Example 7

A shopkeeper earns a profit of Re 1 by selling one pen and incurs a loss of 40 paise per pencil while selling pencils of her old stock.
(i) In a particular month she incurs a loss of Rs 5 . In this period, she sold 45 pens. How many pencils did she sell in this period?
(ii) In the next month she earns neither profit nor loss. If she sold 70 pens, how many pencils did she sell?

Solution

(i) Profit earned by selling one pen $=\operatorname{Re} 1$

Profit earned by selling 45 pens $=$ Rs 45 , which we denote by + Rs 45

Total loss given $=$ Rs 5 , which we denote by -5
Profit earned + Loss incurred $=$ Total loss
Therefore, Loss incurred $=$ Profit earned

$=\operatorname{Rs}(-5-45)=\operatorname{Rs}(-50)=-5000$ paise
Loss incurred by selling one pencil $=40$ paise which we write as -40 paise
So, number of pencils sold $=(-5000) \div(-4)=125$ pencils.
(ii) In the next month there is neither profit nor loss.

So, Profit earned + Loss incurred $=0$
i.e., Profit earned $=-$ Loss incurred

Now profit earned by selling 70 pens $=$ Rs 70
Hence, loss incurred by selling pencils $=$ Rs 70 which we indicate by - Rs 70 or - 7,000 paise.

Total number of pencils sold $=(-7000) \div(-40)=175$ pencils.

Exercise 1.4

1. Evaluate each of following:
(a) $(-24) \div 5$
(b) $25 \div(-5)$
(c) $(-36) \div(-9)$
(d) $(-49) \div(49)$
(e) $13 \div[(-2)+(-11]$
(f) $0 \div(-13)$
(g) $(-32) \div[(-15)+(13)]$
2. Verify that $a \div+c \neq \square \div b+c$ for each of the following values of a, b and .
(a) $a=12, b=-6, c=4$
(b) $a=(-10), b=1, c=1$
3. Fill in the blank:
(a) $169 \div()=369$
(b) $(-65) \div(\quad)=13$
(c) $-91 \div(\quad)=-7$
(d) $-84 \div(\quad)=1$
(e) $64 \div(\quad)=-16$
4. Write five pairs of integers $\mathbb{4}, b$, such that $a \div b=-3$. One such pair is $(6,-2)$ because $6 \div(2)=(-3)$.
5. The temperature at 12 noon was $10^{\circ} \mathrm{C}$ above zero. If it decreases at the rate of $20^{\circ} \mathrm{C}$ per hour until midnight, at what time would the temperature be $8^{\circ} \mathrm{C}$ below zero? What would be the temperature at mid-night?
6. In a class test $(+3)$ marks are given for every correct answer and (-2) marks given for every incorrect answer and no marks for not attempting any question. (i) Suraiya scored 20 marks. If she has got 12 correct answers, how many questions has she attempted incorrectly? (ii) Raziya scores - 5 marks in this test, though she has got 7 correct answers. How many questions has she attempted incorrectly?
7. An elevator descends into a mine shaft at the rate of $6 \mathrm{~m} / \mathrm{min}$. If the descent starts from 10 m above the ground level, how long will it take to reach -350 m .

What Have We Discussed

1. Integers are bigger collection of numbers which is formed by whole numbers and their negatives.
2. You have studied in the earlier class, about the representation of integers on the number line and their addition and subtraction.
3. We now study the properties satisfied by addition and subtraction.
(a) Integers are closed for addition and subtraction both. That is $a+b$ and $a-b$ are again integers, where a and b are any integers.
(b) Addition is commutative for integers, i.e., $a+b=b+a$ for all integers a and b.
(c) Addition is associative for integers, i.e., $4+b+c=a+\boldsymbol{\top}+c$ for all integers a, b and c.
(d) Integer 0 is the identity under addition. That is $a+0=0+a=a$ for every integer a.
4. We studied, how integers could be multiplied, and found that product of a positive and a negative integer is a negative integer, whereas the product of two negative integers is a positive integer. For example, $-2 \times 7=-14$ and $-3 \times-8=24$.
5. Product of even number of negative integers is positive, whereas the product of odd number of negative integers is negative.
6. Integers show some properties under multiplication.
(a) Integers are closed under multiplication. That is $a \times b$ is an integer for any two integers a and b.
(b) Multiplication is commutative for integers. That is $a \times b=b \times a$ for any integers a and b.
(c) The integer 1 is the identity under multiplication, i.e., $1 \times a=a \times 1=a$ for any integer a.
(d) Multiplication is associative for integers, i.e., $\mathbb{4} \times b \times c=a \ll c^{-}$, for any three integers a, b and c.
7. Under addition and multiplication, integers show a property called distributive property. That is $a \times c=a \times b+a \times c$ for any three integers a, b and .
8. The properties of Commutativity, Associativity under addition and multiplication, and distributive property help us to make our calculations easier
9. We also learnt how to divide integers. We found that,
(a) When a positive integer is divided by a negative integer, the quotient obtained is a negative integer and vice-versa.
(b) Division of a negative integer by another negative integer gives a positive integer as quotient.
10. For any integer a, we have
(a) $a \div 0$ is not defined
(b) $a \div 1=a$

FRACTIONS and DECIMALS

CHAPTER 2

2.1 Introduction

You have learnt fractions and decimals in earlier classes. The study fractions included proper, improper and mixed fractions as well as their addition and subtraction. We also studied comparison of fractions, equivalent fractions, representation of fractions on the number line and ordering of fractions.

Our study of decimals included, their comparison, their representation on the number line and their addition and subtraction.

We shall now learn multiplication and division of fractions as well as decimals.

2.2 How Well Have You Learnt About Fractions?

A proper fraction is a fraction that represents a part of a whole. Is $\frac{7}{4}$ a proper fraction?
Which is bigger, the numerator or the denominator?
An improper fraction is a combination of whole and a proper fraction. Is $\frac{7}{4}$ an improper fraction? Which is bigger here, the numerator or the denominator?
The improper fraction $\frac{7}{4}$ can be written as $1 \frac{3}{4}$. This is a mixed fraction.
Can you write five examples each of proper, improper and mixed fraction?
Example 1 Write five equivalent fractions of $\frac{3}{5}$.
Solution One of the equivalent fractions of $\frac{3}{5}$ is

$$
\frac{3}{5}=\frac{3 \times 2}{5 \times 2}=\frac{6}{10} . \text { Find the other four. }
$$

Example 2 Rameez solved $\frac{2}{7}$ part of an exercise while Sameena solved $\frac{4}{5}$ of it. Who solved lesser part?

Solution In order to find who solved lesser part of the exercise, let us compare $\frac{2}{7}$ and $\frac{4}{5}$.
Converting them to like fractions we have, $\frac{2}{7}=\frac{10}{35}, \frac{4}{5}=\frac{28}{35}$.
Since $10<28$, so $\frac{10}{35}<\frac{28}{35}$.
Thus $\frac{2}{7}<\frac{4}{5}$.
Rameez solved lesser part than Sameena.
Example 3 Aamina purchased $3 \frac{1}{2} \mathrm{~kg}$ apples and $4 \frac{3}{4} \mathrm{~kg}$ oranges. What is the total weight of the fruit purchased by her?

Solution The total weight of the fruits $=\left(3 \frac{1}{2}+4 \frac{3}{4}\right) \mathrm{kg}$

$$
\begin{aligned}
& =\left(\frac{7}{2}+\frac{19}{4}\right) \mathrm{kg}=\left(\frac{14}{4}+\frac{19}{4}\right) \mathrm{kg} \\
& =\frac{33}{4} \mathrm{~kg}=8 \frac{1}{4} \mathrm{~kg}
\end{aligned}
$$

Example 4 Rubina studies $5 \frac{2}{3}$ hours daily. She devotes $2 \frac{4}{5}$ hours of her time for Science and Mathematics. How much time does she devote for other subjects?

Solution Total time of Rubina's study $=5 \frac{2}{3} \mathrm{~h}=\frac{17}{3} \mathrm{~h}$

Time devoted by her for Science and Mathematics $=2 \frac{4}{5}=\frac{14}{5} \mathrm{~h}$

Thus, time devoted by her for other subjects $=\left(\frac{17}{3}-\frac{14}{5}\right) \mathrm{h}$

$$
\begin{aligned}
& =\left(\frac{17 \times 5}{15}-\frac{14 \times 3}{15}\right) h=\left(\frac{85-42}{15}\right) h \\
& =\frac{43}{15} h=2 \frac{13}{15} h
\end{aligned}
$$

Exercise 2.1

1. Solve
(i) $2-\frac{3}{5}$
(ii) $4+\frac{7}{8}$
(iii) $\frac{3}{5}+\frac{2}{7}$
(iv) $\frac{9}{11}-\frac{4}{15}$
(v) $\frac{7}{10}+\frac{2}{5}+\frac{3}{2}$
(vi) $2 \frac{2}{3}+3 \frac{1}{2}$
(vii) $\frac{3}{4}+\frac{1}{4}+2 \frac{2}{3}-3 \frac{5}{4}$
2. Arrange the following in ascending order:
(i) $\frac{4}{7}, \frac{2}{5}, \frac{4}{35}, \frac{8}{7}$
3. In a magic square", the sum of the numbers in each row, in each column and along the diagonal is the same. Is this a magic square?

$\frac{2}{13}$	$\frac{9}{13}$	$\frac{4}{13}$
$\frac{7}{13}$	$\frac{5}{13}$	$\frac{3}{13}$
$\frac{6}{13}$	$\frac{1}{13}$	$\frac{8}{13}$

(Along the first row $\frac{2}{13}+\frac{9}{13}+\frac{4}{13}=\frac{15}{13}$)
4. A rectangle sheet of paper is $12 \frac{1}{2} \mathrm{~cm}$ long and $10 \frac{2}{3} \mathrm{~cm}$ wide. Find its perimeter.
5. Find the perimeter of (i) $\triangle \mathrm{ABC}$ (ii) the square BCEF in this figure. Whose perimeter is greater?

6. Salim wants to put a picture in a frame. The picture is $7 \frac{3}{5} \mathrm{~cm}$ wide. To fit in the frame the picture cannot be more than $7 \frac{3}{10} \mathrm{~cm}$ wide. How much should the picture be trimmed?
7. Sameena ate $\frac{1}{3}$ part of the chocolate which her mother gave. Her sister Ruksana ate the remaining chocolate. How much part of the chocolate did Ruksana eat? Who had the larger share? By how much?
8. Akram finished colouring a picture in $\frac{7}{12}$ hour. Ashiq finished colouring the same picture in $\frac{3}{4}$ hour. Who worked longer? By what fraction was it longer?

2.3 Multiplication of Fractions

You know how to find the area of a rectangle. It is equal to length \times breadth. If the length and breadth of a rectangle are 7 cm and 4 cm respectively, then what will be its area? Its area would be $7 \times 4=28 \mathrm{~cm}^{2}$.

What will be the area of the rectangle if its length and breadth are $7 \frac{1}{2} \mathrm{~cm}$ and $3 \frac{1}{2}$ cm respectively? You will say it will be $7 \frac{1}{2} \times 3 \frac{1}{2}=\frac{15}{2} \times \frac{7}{2} \mathrm{~cm}^{2}$. The number $\frac{15}{2}$ and $\frac{7}{2}$ are fractions. To calculate the area of the given rectangle, we need to know how to multiply fractions. We shall learn that now.

2.3.1 Multiplication of a Factor by a Whole Number

Observe the pictures at the left (Fig 2.1). Each shaded part is $\frac{1}{4}$ part of a circle. How much will the two shaded parts represent together? They will represent $\frac{1}{4}+\frac{1}{4}=2 \times \frac{1}{4}$.
Fig 2.1
Combining the two shaded parts, we get Fig 2.2. What part of a circle does the shaded part in Fig 2.2 represent? It represents $\frac{2}{4}$ part of a circle.

or

Fig 2.2
The shaded portions in Fig 2.1 taken together are the same as the shaded portion in Fig 2.2, i.e., we get Fig 2.3

Fig 2.3

$$
0 \mathrm{r} \quad 2 \times \frac{1}{4}=\frac{2}{4}
$$

Can you now tell what this picture will represent? (Fig 2.4)

Fig 2.4

And this? (Fig 2.5)

Fig 2.5
Let us now find $3 \times \frac{1}{2}$.

We have

$$
3 \times \frac{1}{2}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}
$$

We also have

$$
\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1+1+1}{2}=\frac{3 \times 1}{2}=\frac{3}{2}
$$

So

$$
3 \times \frac{1}{2}=\frac{3 \times 1}{2}=\frac{3}{2}
$$

Similarly

$$
\frac{2}{3} \times 5=\frac{2 \times 5}{3}=?
$$

Can you tell

$$
3 \times \frac{2}{7}=? \quad 4 \times \frac{3}{5}=?
$$

The fractions that we considered till now, i.e., $\frac{1}{2}, \frac{2}{3}, \frac{2}{7}$ and $\frac{3}{5}$ were proper fractions.
For improper fractions also we have,

$$
2 \times \frac{5}{3}=\frac{2 \times 5}{3}=\frac{10}{3}
$$

Try,

$$
3 \times \frac{8}{7}=? \quad 4 \times \frac{7}{5}=?
$$

Thus, to multiply a whole number with a proper or an improper fraction, we multiply the whole number with the numerator of the fraction, keeping the denominator same.

TRY THESE

1. Find: (a) $\frac{2}{7} \times 3$
(b) $\frac{9}{7} \times 6$
(c) $3 \times \frac{1}{8}$
(d) $\frac{13}{11} \times 6$

If the product is an improper fraction express it as a mixed fraction.
2. Represent pictorially: $2 \times \frac{2}{5}=\frac{4}{5}$

Try These
Find: (i) $5 \times 2 \frac{3}{7}$
(ii) $1 \frac{4}{6} \times 6$

To multiply a mixed fraction to a whole number, first convert the mixed fraction to an improper fraction and then multiply.
Therefore, $\quad 3 \times 2 \frac{5}{7}=3 \times \frac{19}{7}=\frac{57}{7}=8 \frac{1}{7}$.
Similarly, $2 \times 4 \frac{2}{5}=2 \times \frac{22}{5}=$?

Fraction as an operator \quad of

Observe these figures (Fig2.6)

The two squares are exactly similar.
Each shaded portion represents $\frac{1}{2}$ of 1 .
So, both the shaded portions together will represent $\frac{1}{2}$ of 2 .
Combine the 2 shaded $\frac{1}{2}$ parts. It represents 1 .
So, we say $\frac{1}{2}$ of 2 is 1 . We can also get it as $\frac{1}{2} \times 2=1$.
Thus, $\frac{1}{2}$ of $2=\frac{1}{2} \times 2=1$

Fig 2.6

Also look at these squares (Fig 2.7).
Each shaded portion represents $\frac{1}{2}$ of 1 .
So, both the three shaded portions represent $\frac{1}{2}$ of 3 .
Combine the 3 shaded parts.
It represents $1 \frac{1}{2}$ i.e., $\frac{3}{2}$.

Fig 2.7

So, $\frac{1}{2}$ of 3 is $\frac{1}{3}$.Also, $\frac{1}{2} \times 3=\frac{3}{2}$.
Thus, $\frac{1}{2}$ of $3=\frac{1}{2} \times 3=\frac{3}{2}$.
So, we see that of ${ }^{6}$ represents multiplication.

Shazia has 20 marbles. Anjum has $\frac{1}{5}$ th of the number of marbles what Shazia has. How many marbles Anjum has? As, of $^{\text {c }}$ indicates multiplication, so Anjum has $\frac{1}{5} \times 20=4$ marbles.

Similarly, we have $\frac{1}{2}$ of 16 is $\frac{1}{2} \times \frac{16}{2}=8$.

TRY THESE

Can you tell, what is (i) $\frac{1}{2}$ of $10 ?$, (ii) $\frac{1}{4}$ of $16 ?$, (iii) $\frac{2}{5}$ of $25 ?$

Example 5

In a class of 40 students $\frac{1}{5}$ of the total number of students like to study English, $\frac{2}{5}$ of the total number like to study mathematics and the remaining students like to study science.
(h) How many students like to study English?
(ii) How many students like to study Mathematics?
(iii) What fraction of the total number of students like to study science?

Solution

Total number of students in the class $=40$
(i) Of these $\frac{1}{5}$ of the total number of students like to study English. Thus, the number of students who like to study English $=\frac{1}{5}$ of $40=\frac{1}{5} \times 40=8$.
(ii) Try yourself.
(iii) The number of students who like to English and Mathematics $=8+16=24$. Thus, the number of students who like Science $=40-24=16$.
Thus, the required fraction is $\frac{16}{40}$.

Exercise 2.2

1. Which of the drawings (a) to (d) show:
(i) $2 \times \frac{1}{5}$
(ii) $2 \times \frac{1}{2}$
(iii) $3 \times \frac{2}{3}$
(iv) $3 \times \frac{1}{4}$

(a)
(b)

(c)

(d)

2. Some pictures (a) to (c) are given below. Tell which of them show:
(i) $3 \times \frac{1}{5}=\frac{3}{5}$
(ii) $2 \times \frac{1}{3}=\frac{2}{3}$
(iii) $3 \times \frac{3}{4}=2 \frac{1}{4}$

3. Multiply and reduce to lowest form and convert into a mixed fraction:
(i) $7 \times \frac{3}{5}$
(ii) $4 \times \frac{1}{3}$
(iii) $2 \times \frac{6}{7}$
(iv) $5 \times \frac{2}{9}$
(v) $\frac{2}{3} \times 4$
(vi) $\frac{5}{2} \times 6$
(vii) $11 \times \frac{4}{7}$ (viii) $20 \times \frac{4}{5}$
(ix) $13 \times \frac{1}{3}$
(x) $15 \times \frac{3}{5}$
(xi) $16 \times \frac{3}{8}$
(xii) $6 \times \frac{3}{7}$
4. Shade: (i) $\frac{1}{2}$ of the circles in box (a) (ii) $\frac{2}{3}$ of triangles in box (b)
(iii) $\frac{3}{5}$ of the squares in box (c).

(a)

(b)

(c)
5. Find:
(a) $\frac{1}{2}$ of
(i) 24
(ii) 46
(b) $\frac{2}{3}$ of
(i) 18 (ii) 27
(c) $\frac{3}{4}$ of
(i) 16
(ii) 36
(d) $\frac{4}{5}$ of
(i) 20
(ii) 35
6. Multiply and express as a mixed fraction:
(a) $3 \times 5 \frac{1}{5}$
(b) $5 \times 6 \frac{3}{4}$
(c) $7 \times 2 \frac{1}{4}$
(d) $4 \times 6 \frac{1}{3}$
(e) $3 \frac{1}{4} \times 6$
(f) $3 \frac{2}{5} \times 8$
7. Find:
(a) $\frac{1}{2}$ of
(i) $2 \frac{3}{4}$
(ii) $4 \frac{2}{9}$
(b) $\frac{5}{8}$ of
(i) $3 \frac{5}{6}$
(ii) $9 \frac{2}{3}$
8. Rozy and Tabassum went for a picnic. They purchased pizza from market of weight 200 gm . Rozy ate $\frac{3}{5}$ of it. Tabassum ate the rest
(i) How much did Tabassum eat?
(ii) What fraction of the total gm was taken by Tabassum?
9. Javaid and Munish went to a tea party of their friend Sameena. Sameena‘s mother offered to all the friends a big Britannia cake having 24 pieces. Javaid ate $\frac{2}{6}$ of the cake, Sameena ate $\frac{1}{12}$ of the cake and Munish ate $\frac{1}{4}$ of the cake.
Find
(i) How much pieces each took?
(ii) What fraction of the total remained?

2.3.2 Multiplication of a Fraction by a fraction

Zareena had a 9 cm long strip of ribbon. She cut this strip into four equal parts. How did she do it? She folded the strip twice. What fraction of the total length will each part represent?
Each part will be $\frac{9}{4}$ of the strip. She took one part and divided it in two equal parts by folding the part once. What will one of the pieces represent? It will represent $\frac{1}{2}$ of $\frac{9}{4}$ or $\frac{1}{2} \times \frac{9}{4}$.

Let us now see how to find the product of two fractions like $\frac{1}{2} \times \frac{9}{4}$.

Fig 2.8

Fig 2.9 To do this we first learn to find the products like $\frac{1}{2} \times \frac{1}{3}$.
(a) How do we find $\frac{1}{3}$ of a whole? We divide the whole in three equal parts. Each of the three parts represent $\frac{1}{3}$ of the whole. Take one part of these three parts and shade it as shown in Fig 2.8.
(b) How will you find $\frac{1}{2}$ of this shaded part? Divide this onethird $\left(\frac{1}{3}\right)$ shaded part into two equal parts. Each of these two parts represents $\frac{1}{2}$ of $\frac{1}{3}$ i.e., $\frac{1}{2} \times \frac{1}{3}$ (Fig 2.9). Take out 1 part of these two and name it $A^{\prime} \cdot A^{\prime}$ represents $\frac{1}{2} \times \frac{1}{3}$.
(c) What fraction is A^{*} of the whole? For this, divide each of the remaining $\frac{1}{3}$ parts also in two equal parts. How many such equal parts do you have now? There are six such equal parts A^{\prime} is one of these parts.

So,,A^{\prime} is $\frac{1}{6}$ of the whole. Thus, $\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$.
How did we decide that \underline{A}^{\prime} ' was $\frac{1}{6}$ of the whole? The whole was divided in $6=2 \times 3$ parts and $1=1 \times 1$ part was taken out of it.

Thus,

$$
\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}=\frac{1 \times 1}{2 \times 3}
$$

or

$$
\frac{1}{2} \times \frac{1}{3}=\frac{1 \times 1}{2 \times 3}
$$

The value of $\frac{1}{3} \times \frac{1}{2}$ can be found in a similar way. Divide the whole into two equal parts and then divide one of these parts in three equal parts. Take one these parts. This will represent $\frac{1}{3} \times \frac{1}{2}$ i.e., $\frac{1}{6}$.

Therefore

$$
\frac{1}{3} \times \frac{1}{2}=\frac{1}{6}=\frac{1 \times 1}{3 \times 2} \text { as we discussed earlier. }
$$

Hence

$$
\frac{1}{2} \times \frac{1}{3}=\frac{1}{3 .} \times \frac{1}{2}=\frac{1}{6}
$$

Find $\frac{1}{3} \times \frac{1}{4}$ and $\frac{1}{4} \times \frac{1}{3} ; \frac{1}{2} \times \frac{1}{5}$ and $\frac{1}{5} \times \frac{1}{2}$ and check whether you get

$$
\frac{1}{3} \times \frac{1}{4}=\frac{1}{4} \times \frac{1}{3} ; \frac{1}{2} \times \frac{1}{5}=\frac{1}{5} \times \frac{1}{2}
$$

TRY THESE

Fill in these boxes:
(i) $\frac{1}{2} \times \frac{1}{7}=\frac{1 \times 1}{2 \times 7}=$

(ii) $\frac{1}{5} \times \frac{1}{7}=\square=\square$
(iii) $\frac{1}{7} \times \frac{1}{2}=\square=\square$
(iv) $\frac{1}{7} \times \frac{1}{5}=\square=\square$

Example 6

Salim reads $\frac{1}{3}$ part of a book in 1 hour. How much part of the book will he read in $2 \frac{1}{5}$ hours?

Solution

The part of the book read by Salim in 1 hour $=\frac{1}{3}$.

So, the part of the book read by him in $2 \frac{1}{5}$ hours $=2 \frac{1}{5} \times \frac{1}{3}$

$$
=\frac{11}{5} \times \frac{1}{3}=\frac{11 \times 1}{5 \times 3}=\frac{11}{15}
$$

Let us now find $\frac{1}{2} \times \frac{5}{3}$. We know that $\frac{5}{3}=\frac{1}{3} \times 5$.

$$
\text { So, } \frac{1}{2} \times \frac{5}{3}=\frac{1}{2} \times \frac{1}{3} \times 5=\frac{1}{6} \times 5=\frac{5}{6}
$$

Also, $\frac{5}{6}=\frac{1 \times 5}{2 \times 3}$. Thus, $\frac{1}{2} \times \frac{5}{3}=\frac{1 \times 5}{2 \times 3}=\frac{5}{6}$.
This is also shown by the figures drawn below. Each of these five equal shapes (Fig 2.10) are parts of a five similar circles. Take one such shape. To obtain this shape we first divide a circle in three equal parts. Further divide each of these three parts in two equal parts. One part out of it is the shape we considered. What will it represent?
It will represent $\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$. The total of such part would be $5 \times \frac{1}{6}=\frac{5}{6}$.

Fig 2.10

TRY THESE
 Similarly $\quad \frac{3}{5} \times \frac{1}{7}=\frac{3 \times 1}{5 \times 7}=\frac{3}{35}$.

Find: $\frac{1}{3} \times \frac{4}{5} ; \frac{2}{3} \times \frac{1}{5}$
We can thus find $\frac{2}{3} \times \frac{7}{5}$ as $\frac{2}{3} \times \frac{7}{5}=\frac{2 \times 7}{3 \times 5}=\frac{14}{15}$.
So, we find that we multiply two fractions as $\frac{\text { Product of Numerators }}{\text { Productof Denominators }}$.

Value of the Products

You have seen that the product of two whole numbers is bigger than each of the two whole numbers. For example, $3 \times 4=12$ and $12>4,12>3$. What happens to the value of the products when we multiply two fractions?

Let us first consider the product of two proper fractions.

We have,

$\frac{2}{3} \times \frac{4}{5}=\frac{8}{15}$	$\frac{8}{15}<\frac{2}{3}, \frac{8}{15}<\frac{4}{5}$	Product is less than each of the fractions
$\frac{1}{5} \times \frac{2}{7}=--$	----	\qquad
$\frac{3}{5} \times \frac{\square}{8}=\frac{21}{40}$	--------------	---
$\frac{2}{\square} \times \frac{4}{9}=\frac{8}{45}$	---------------	-----

You will find that when two proper fractions are multiplied, the product is less than each of the fractions. Or, we say the value of the product of two proper fractions is smaller than each of the fractions.

Check this by constructing five more examples.
Let us now multiply two improper fractions.

$\frac{7}{3} \times \frac{5}{2}=\frac{35}{6}$	$\frac{35}{6}>\frac{7}{3}, \frac{35}{6}>\frac{5}{2}$	Product is greater than each of the fractions
$\frac{6}{5} \times \frac{\square}{3}=\frac{24}{15}$	------------------	\qquad
$\frac{9}{2} \times \frac{7}{\square}=\frac{63}{8}$		---
$\frac{3}{\square} \times \frac{8}{7}=\frac{24}{14}$	------------------	----

We find that the product of two improper fractions is greater than each of the two fractions.

Or, the value of the product of two improper fractions is more than each of the two fractions.

Construct five more examples for yourself and verify the above statement.
Let us now multiply a proper and an improper fraction, say $\frac{2}{3}$ and $\frac{7}{5}$.

We have $\quad \frac{2}{3} \times \frac{7}{5}=\frac{14}{15}$. Here, $\frac{14}{15}<\frac{7}{5}$ and $\frac{14}{15}>\frac{2}{3}$
The product obtained is less than the improper fraction and greater than the proper fraction involved in the multiplication.

Check it for $\frac{6}{5} \times \frac{2}{7}, \frac{8}{3} \times \frac{4}{5}$.

Exercise 2.3

1. Find:
(i) $\frac{1}{4}$ of
(a) $\frac{1}{4}$
(b) $\frac{3}{5}$
(c) $\frac{4}{3}$
(ii) $\frac{1}{7}$ of
(a) $\frac{2}{9}$
(b) $\frac{6}{5}$
(c) $\frac{3}{10}$
(iii) $\frac{1}{3}$ of
(a) $\frac{3}{7}$
(b) $\frac{1}{3}$
(c) $\frac{12}{13}$
2. Multiply and reduce to lowest form (if possible):
(i) $\frac{2}{3} \times 2 \frac{2}{3}$
(ii) $\frac{2}{7} \times \frac{7}{9}$
(iii) $\frac{3}{8} \times \frac{6}{4}$
(iv) $\frac{9}{5} \times \frac{3}{5}$
(v) $\frac{1}{3} \times \frac{15}{8}$
(vi) $\frac{11}{2} \times \frac{3}{10}$
(vii) $\frac{14}{5} \times \frac{12}{7}$
(viii) $\frac{3}{7} \times \frac{11}{9}$
(ix) $\frac{2}{7} \times \frac{21}{9}$
(x) $\frac{4}{5} \times \frac{40}{32}$
3. Multiply the following fractions:
(i) $\frac{2}{5} \times 5 \frac{1}{4}$
(ii) $6 \frac{2}{5} \times \frac{7}{9}$
(iii) $\frac{3}{2} \times 5 \frac{1}{3}$
(iv) $\frac{5}{6} \times 2 \frac{3}{7}$
(v) $3 \frac{2}{5} \times \frac{4}{7}$
(vi) $2 \frac{3}{5} \times 3$
(vii) $3 \frac{4}{7} \times \frac{3}{5}$
(viii) $4 \frac{3}{7} \times 2 \frac{4}{5}$
(ix) $3 \frac{1}{5} \times 4 \frac{3}{3}$
4. Which is greater:
(i) $\frac{2}{7}$ of $\frac{3}{4}$ or $\frac{3}{5}$ of $\frac{5}{8}$
(ii) $\frac{1}{2}$ of $\frac{6}{7}$ or $\frac{2}{3}$ of $\frac{3}{7}$
5. Saika plants 4 saplings, in a row, in her garden. The distance between two adjacent saplings is $\frac{3}{4} \mathrm{~m}$. find the distance between the first and the last sapling.
6. Aaliya reads a book for $1 \frac{3}{4}$ hours everyday. She reads the entire book in 6 days. How many hours in all were required by her to read the book?
7. A car runs 16 km using 1 litre of petrol. How much distance will it cover using $2 \frac{3}{4}$ litres of petrol.
8. (a) (i) Provide the number in the box , such that $\frac{2}{3} \times \square=\frac{10}{30}$.
(ii) The simplest form of the number obtained in \square is \qquad .
(b) (i) Provide the number in the box \square, such that $\frac{3}{5} \times \square=\frac{24}{75}$.
(ii) The simplest form of the number obtained in \square is \qquad .
(c) Fill in the box

$$
\frac{3}{7} \times \square=\frac{12}{9} .
$$

2.4 Division of Fractions

Ali has a paper strip of length 6 cm . He cuts this strip in smaller strips of length 2 cm each. You know he would get $6 \div 2=3$ strips.
Ali cuts another strip of length 6 cm into smaller strips of length $\frac{3}{2} \mathrm{~cm}$ each. How many strips will he get now? He will get $6 \div \frac{3}{2}$ strips.
A paper strip of length $\frac{15}{2} \mathrm{~cm}$ can be cut into smaller strips of length $\frac{3}{2} \mathrm{~cm}$ each to give $\frac{15}{2} \div \frac{3}{2}$ pieces.

So, we are required to divide a whole number by a fraction or a fraction by another fraction. Let us see how to do that.

2.4.1 Division of Whole Number by a Fraction

Let us find $1 \div \frac{1}{2}$.
We divide a whole into a number of equal parts such that each part is half of the whole.
The number of such half ($\frac{1}{2}$) parts would be $1 \div \frac{1}{2}$. Observe the figure (Fig 2.11). How many half parts do you see?

There are two half parts.
So, $\quad 1 \div \frac{1}{2}=2$. Also, $1 \times \frac{2}{1}=1 \times 2=2$. Thus, $1 \div \frac{1}{2}=1 \times \frac{2}{1}$

Fig 2.11

Similarly, $3 \div \frac{1}{4}=$ number of $\frac{1}{4}$ parts obtained when each of the 3 whole, are divided into $\frac{1}{4}$ equal parts $=12($ From Fig 2.12 $)$

$\frac{1}{4}$	$\frac{1}{4}$
$\frac{1}{4}$	$\frac{1}{4}$

Fig 2.12

Observe also that, $3 \times \frac{4}{1}=3 \times 4=12$. Thus, $3 \div \frac{1}{4}=3 \times \frac{4}{1}=12$.
Find in similar way, $3 \div \frac{1}{2}$ and $3 \times \frac{2}{1}$.

Reciprocal of a fraction

The number $\frac{2}{1}$ can be obtained by interchanging the numerator and denominator of $\frac{1}{2}$ or by inverting $\frac{1}{2}$. Similarly, $\frac{3}{1}$ is obtained by inverting $\frac{1}{3}$.
Let us first see the inverting of such numbers.
Observe these products and fill in the blanks:

$7 \times \frac{1}{7}=1$	$\frac{5}{4} \times \frac{4}{5}=-----$
$\frac{1}{9} \times 9=-----$	$\frac{2}{7} \times-----=1$
$\frac{2}{3} \times \frac{3}{2}=\frac{2 \times 3}{3 \times 2}=\frac{6}{6}=1$	$-----\times \frac{5}{9}=1$

Multiply five more such pairs.

The non-zero numbers whose product with each other is 1 , are called the reciprocals of each other. So reciprocal of $\frac{5}{9}$ is $\frac{9}{5}$ and the reciprocal of $\frac{9}{5}$ is $\frac{5}{9}$. What is the reciprocal of $\frac{1}{9} ? \frac{2}{7}$?
You will see that the reciprocal of $\frac{2}{3}$ is obtained by inverting it. You get $\frac{3}{2}$.

THINK, DISCUSS and WRITE

(j) Will the reciprocal of a proper fraction be again a proper fraction?
(iii) Will the reciprocal of an improper fraction be again an improper fraction?

Therefore, we can say that

$$
\begin{aligned}
& 1 \div \frac{1}{2}=1 \times \frac{2}{1}=1 \times \text { reciprocalof } \frac{1}{2} \\
& 3 \div \frac{1}{4}=3 \times \frac{4}{1}=3 \times \text { reciprocalof } \frac{1}{4} \\
& 3 \div \frac{1}{2}=----=---------- \\
& \text { So, } 2 \div \frac{3}{4}=2 \times \text { reciprocalof } \frac{3}{4}=2 \times \frac{4}{3} \\
& 5 \div \frac{2}{9}=5 \times------=5 \times-------
\end{aligned}
$$

Thus, to divide a whole number by any fraction, multiply that whole number by the reciprocal of that fraction.
TRY THESE
Find: (i) $7 \div \frac{2}{5}$
(ii) $6 \div \frac{4}{7}$
(iii) $2 \div \frac{8}{9}$

While dividing a whole number by a mixed fraction, first convert the mixed fraction into improper fraction and then solve it.

Thus, $4 \div 2 \frac{2}{5}=4 \div \frac{12}{5}=$? Also, $5 \div 3 \frac{1}{3}=3 \div \frac{10}{3}=$?

2.4.2 Division of a Fraction by a whole Number

- What will be $\frac{3}{4} \div 3$?

Based on our earlier observation we have:
$\frac{3}{4} \div 3=\frac{3}{4} \div \frac{3}{1}=\frac{3}{4} \times \frac{1}{3}=\frac{3}{12}=\frac{1}{4}$
So, $\frac{2}{3} \div 7=\frac{2}{3} \times \frac{1}{7}=$?

> TRY THESE
> Find: (i) $6 \div 5 \frac{1}{3}$
> (ii) $7 \div 2 \frac{4}{7}$

What is $\frac{5}{7} \div 6, \frac{2}{7} \div 8$?

- While dividing mixed fraction by whole numbers, convert the mixed fraction into improper fractions. That is,

$$
2 \frac{2}{3} \div 5=\frac{8}{3} \div 5=----; 4 \frac{2}{5} \div 3=----=----; 2 \frac{3}{5} \div 2=----=----
$$

2.4.3 Division of a Fraction by Another Fraction

We can now find $\frac{1}{3} \div \frac{5}{6}$.
$\frac{1}{3} \div \frac{5}{6}=\frac{1}{3} \times$ reciprocalof $\frac{5}{6}=\frac{1}{3} \times \frac{6}{5}=\frac{2}{5}$.
Similarly, $\frac{8}{5} \div \frac{2}{3}=\frac{8}{5} \times$ reciprocalof $\frac{2}{3}=$? and, $\frac{1}{2} \div \frac{3}{4}=$?

Exercise 2.4

1. Find:
(i) $12 \div \frac{3}{4}$
(ii) $14 \div \frac{5}{6}$
(iii) $8 \div \frac{7}{3}$
(iv) $4 \div \frac{8}{3}$
(v) $3 \div 2 \frac{1}{3}$
(vi) $5 \div 3 \frac{4}{7}$
(vii) $3 \frac{1}{2} \div 2 \frac{1}{3}$
(vii) $\frac{7}{13} \div 6 \frac{1}{2}$
2. Find the reciprocal of each of the following fractions. Classify the reciprocals as proper fractions, improper fractions and whole numbers.
(i) $\frac{3}{7}$
(ii) $\frac{5}{8}$
(iii) $\frac{9}{7}$
(iv) $\frac{6}{5}$
(v) $\frac{12}{7}$
(vi) $\frac{1}{8}$
(vii) $\frac{1}{11}$
(viii) $\frac{2}{3}$
(ix) $\frac{2}{3} \div \frac{3}{2}$
(x) $\frac{4}{5} \times 1 \frac{1}{4}$
3. Find:
(i) $\frac{7}{3} \div 2$
(ii) $\frac{4}{9} \div 5$
(iii) $\frac{6}{13} \div 7$
(iv) $4 \frac{1}{3} \div 3$
(v) $3 \frac{1}{2} \div 4$
(vi) $4 \frac{3}{7} \div 7$
4. Find:
(i) $\frac{2}{5} \div \frac{1}{2}$
(ii) $\frac{4}{9} \div \frac{2}{3}$
(iii) $\frac{3}{7} \div \frac{8}{7}$
(iv) $2 \frac{1}{3} \div \frac{3}{5}$
(v) $3 \frac{1}{2} \div \frac{8}{3}$
(vi) $\frac{2}{5} \div 1 \frac{1}{2}$
(vii) $3 \frac{1}{5} \div 1 \frac{2}{3}$
(viii) $2 \frac{1}{5} \div 1 \frac{1}{5}$
(ix) $3 \frac{1}{2} \div 1 \frac{1}{6}$
(x) $\frac{3}{8} \div 2 \frac{2}{3}$

2.5 How Well Have You Learnt About Decimal Numbers

You have learnt about decimal numbers in the earlier classes. Let us briefly recall them here. Look at the following table and fill up the blank spaces.

Hundreds (100)	Tens (10)	Ones (1)	Tenths $\left(\frac{1}{10}\right)$	Hundredths $\left(\frac{1}{100}\right)$	Thousandths $\left(\frac{1}{1000}\right)$	Numbers
2	5	3	1	4	7	253.147
6	2	9	3	2	1
0	4	3	1	9	2
......	1	4	2	5	1	514.251
2	6	5	1	2	236.512
......	2	5	3	724.503
6	\ldots	4	2	614.326
0	1	0	5	3	0

In the table, you wrote the decimal number, given its place-value expansion. You can do the reverse, too. That is, given the number you can write its expanded form. For example, $235.417=2 \times 100+5 \times 10+3 \times 1+4 \times\left(\frac{1}{10}\right)+1 \times\left(\frac{1}{100}\right)+7 \times\left(\frac{1}{1000}\right)$.

Babloo has Rs 15.50 and Shagufta has Rs 15.75. Who has more money? To find this we need to compare the decimal numbers 15.50 and 15.75. To do this, we first compare the digits on the left of the decimal point, starting from the leftmost digit. Both the digits 1 and 5 , to the left of the decimal point are the same. So we compare the digits on the right of the decimal point starting from the tenth place. We find that $5<7$, so we say $15.50<$ 15.75. Thus, Shagufta has more money than Babloo.

If the digits at the tenth place are also the same then compare the digits at the hundredths palace and so on.

Now compare quickly, 35.63 and 35.67 ; 20.1 and 20.1; 19.36 and 29.36 While converting lower units of money, length and weight, to their higher units, we are required to use decimals. For example,
3 paise $=$ Rs $\frac{3}{100}=$ Rs $0.03,5 g=\frac{5}{1000} \mathrm{~kg}=0.005 \mathrm{~kg}, 7 \mathrm{~cm}=0.007 \mathrm{~m}$.
Write 75 paise $=$ Rs \qquad , $\quad 250 \mathrm{~g}=$ \qquad kg, $\quad 85 \mathrm{~cm}=$ \qquad m.

We also know how to add and subtract decimals. Thus, $21.36+37.35$ is
21.36
$+\quad 37.35$
58.70

What is the value of $0.19+2.3$?
The difference $29.35-4.56$ is

$$
29.35
$$

- 04.56
24.79

Tell the value of $39.87-21.98$.

Exercise 2.5

1. Which is greater?
(i) 0.5 or 0.05
(ii) 0.7 or 0.5
(iii) 7 or 0.7
(iv) 1.37 or 1.49
(v) 2.03 or 2.30
(vi) 0.8 or 0.88
2. Express as rupees using decimals:
(i) 7 paise
(ii) 7 rupees 7 paise
(iii) 77 rupees
(iv) 50 paise
(v) 235 paise
3. (i) Express 5 cm in metre and kilometre (ii) Express 35 mm in cm, m and km.
4. Express in kg:
(i) 200 g
(ii) 3470 g
(iii) 4 kg 8 g
5. Write the following decimal numbers in the expanded form:
(i) 20.03
(ii) 2.03
(iii) 200.03
6. Write the place value of 2 in the following decimal numbers:
(i) 2.56
(ii) 21.37
(iii) 10.25
(iv) 9.42
(v) 63.352 .
7. Aatif went from place A to place B and from there to place C. A is 7.5 km from B and B is 12.7 km from C. Rameez went from place A to place D and from there to place C. D is 9.3 km from A and C is 11.8
 km from D . Who travelled more and by how much?
8. Maria brought 5 kg 300 g apples and 3 kg 250 g mangoes. Sabina bought 4 kg 800 g oranges and 4 kg 150 g bananas. Who bought more fruits?
9. How much less is 28 km than 42.6 km ?

2.6 Multiplication of Decimal Numbers

Safiya purchased 1.5 kg vegetables at the rate of RS 8.50 per kg. How much money should she pay? Certainly it would be Rs (8.50×1.50). Both 8.5 and 1.5 are decimal numbers. So, we have come across a situation where we need to know how to multiply two decimal numbers. Let us now learn the multiplication of two decimal numbers.

First we find 0.1×0.1.

Now, $0.1=\frac{1}{10}$. So, $0.1 \times 0.1=\frac{1}{10} \times \frac{1}{10}=\frac{1 \times 1}{10 \times 10}=\frac{1}{100}=0.01$.
Let us see it‘s pictorial representation (Fig 2.13)
The fraction $\frac{1}{10}$ represents 1 part out of 10 equal parts.

The shaded part in the picture represents $\frac{1}{10}$.

Fig 2.13

We know that,

$$
\frac{1}{10} \times \frac{1}{10} \text { means } \frac{1}{10} \text { of } \frac{1}{10}
$$

So, divide this $\frac{1}{10}^{\text {th }}$ part into 10 equal parts and take one part out of it.
Thus, we have (Fig 2.14)

Fig 2.14
The dotted square is one part out of 10 of the $\frac{1}{10}^{\text {th }}$ part. That is, it represents
$\frac{1}{10} \times \frac{1}{10}$ or 0.1×0.1.
Can the dotted square be represented in some other way?
How many small squares do you find in Fig 2.14?
There are 100 small squares. So the dotted square represents one out of 100 or 0.01 .
Hence, $0.1 \times 0.1=0.01$.
Note that 0.1 occurs two times in the product. In 0.1 there is one digit to the right of the decimal point. In 0.01 there are two digits (i.e., $1+1$) to the right of the decimal point.
Let us now find 0.2×0.3.
We have, $0.2 \times .03=\frac{2}{10} \times \frac{3}{10}$
As we did for $\frac{1}{10} \times \frac{1}{10}$, let us divide the square

Fig 2.15
 into 10 equal parts and take three parts out of it, to get $\frac{3}{10}$.

Again divide three equal parts into 10 equal parts and take two from each. We get $\frac{2}{10} \times \frac{3}{10}$

The dotted square represents $\frac{2}{10} \times \frac{3}{10}$ or $0.2 \times .03$. (Fig 2.15)

Since there are 6 dotted squares out of 100 , so they also represent 0.06 .
Thus, $0.2 \times 0.3=0.06$.
Observe that $2 \times 3=6$ and the number of digits to the right of the decimal point in 0.06 is $2(=1+1)$.

Check whether this applies to 0.1×0.1 also.
Find 0.2×0.4 by applying these observations.
While finding 0.1×0.1 and 0.2×0.3, you might have noticed that first we multiplied them as whole numbers ignoring the decimal point. In 0.1×0.1, we found 01×01 or 1×1. Similarly in 0.2×0.3 we found 02×03 or 2×3.

Then, we counted the number of digits starting from the rightmost digit and moved towards left. We then put the decimal point there. The number of digits to be counted is obtained by adding the number of digits to the right of the decimal point in the decimal number that are being multiplied.

Let us now find 1.2×2.5.
Multiply 12 and 25 . We get 300 . Both, in 1.2 and 2.5 , there is 1 digit to the right of the decimal point. So, count $1+1=2$ digits from the rightmost digits (i.e., 0) in 300 and move towards left. We get 3.00 or 3 .

Find in a similar way $1.5 \times 1.6,2.4 \times 4.2$.
While multiplying 2.5 and 1.25 , you will first multiply 25 and 125 . For placing the decimal in the product obtained, you will count $1+2=3$ (Why?) digits starting from the rightmost digit. Thus, $2.5 \times 1.25=3.225$

Find 2.7×1.35.

TRY THESE

1. Find: (i) 2.7×4
(ii) 1.8×1.2
(iii) 2.3×4.35
2. Arrange the products obtained in (1) in descending order

Example 7

The side of an equilateral triangle is 3.5 cm . Find its perimeter.

Solution

All the sides of an equilateral triangle are equal.
So, length of each side $=3.5 \mathrm{~cm}$
Thus, perimeter $=3 \times 3.5 \mathrm{~cm}=10.5 \mathrm{~cm}$.

Example 8

The length of a rectangle is 7.1 cm and its breadth is 2.5 cm . What is the area of the rectangle?

Solution

Length of the rectangle $=7.1 \mathrm{~cm}$
Breadth of the rectangle $=2.5 \mathrm{~cm}$
Therefore, area of the rectangle $=7.1 \times 2.5 \mathrm{~cm}^{2}=17.75 \mathrm{~cm}^{2}$

2.6.1 Multiplication of Decimal Numbers by 10, 100 and 1000

Maria observed that $2.3=\frac{23}{10}$ whereas $2.35=\frac{235}{100}$. Thus, she found that depending on the position of the decimal point the decimal number can be converted to a fraction with denominator 10 or 100 . She wondered what would happen if a decimal number is multiplied by 10 or 100 or 1000 .

Let us see if we can find a pattern of multiplying numbers by 10 or 100 or 1000 .
Have a look at the table given below and fill in the blanks:

Observe the shift of the decimal point of the products in the table. Here the numbers are multiplied by 10,100 and 1000 . In $1.76 \times 10=17.6$, the digits are same i.e., 1,7 and 6 . Do you observe this in other products also? Observe 1.76 and 17.6. To which side has the decimal point shifted, right or left? The decimal point has shifted to the right by one place.

Note that 10 has one zero over 1.

In $1.76 \times 100=176.0$, observe 1.76 and 176.0 . To which side and by how many digits has the decimal point shifted? The decimal point has shifted to the right by two places.

Note that 100 has two zeros over one.
Do you observe similar shifting of decimal points in other products also?
So we say, when a decimal number is multiplied by 10, 100 or 1000, the digits in the products are same as in the decimal number but the decimal point in the product is shifted to the right by as , many of places as there are zeros over one.

Based on these observations we can now say

$$
0.07 \times 10=0.7,0.07 \times 100=7 \text { and } 0.07 \times 1000=70
$$

Can you now tell $2.97 \times 10=? \quad 2.97 \times 100=? \quad 2.97 \times 1000=$?
Can you now help Maria to find the total amount i.e., Rs 8.50×150, that she has to pay?

Exercise 2.6

1. Find:
(i) 0.2×6
(ii) 8×4.6
(iii) 2.71×5
(iv) 20.1×4
(v) 0.05×7
(vi) 211.02×4
(vii) $2 \times .086$
(viii) 10.35×4
(ix) 209.07×12 (x) 467.3×4
2. (i) Find the area of rectangle whose length is 5.7 and breadth is 3 cm .
(ii) Fid the area of a square whose side is 12.5 cm .
3. Find:
(i) 1.3×10
(ii) 36.8×10
(iii) 153.7×10 (iv) 168.07×10
(v) 31.1×100 (vi) 156.1×100 (vii) 3.62×100 (viii) 43.07×100
4. A two wheeler covers a distance of 55.3 km in one litre of petrol. How much distance will it cover in 10 litres of petrol?
5. Find:
(i) 2.5×0.3
(ii) 0.1×51.7
(iii) 0.2×316.8
(iv) 1.3×3.1
(v) 0.5×0.05
(vi) 11.2×0.15 (vii) 1.07×0.02
(viii) 10.5×1.05 (ix) 101.01×0.01 (x) 100.01×1.1

2.7 Division of Decimal Numbers

Zareena was preparing a design to decorate her classroom. She needed a few coloured strips of paper of length 1.9 cm each. She had a strip of coloured paper of length 9.5 cm . How many pieces of the required length will she get out of this strip? She thought it would be $\frac{9.5}{1.9} \mathrm{~cm}$. Is she correct?
Both 9.5 and 1.9 are decimal numbers too!

2.7.1 Division by 10,100 and 1000

Let us find the division of a decimal number by 10,100 and 1000 .
Consider $31.5 \div 10$.
$31.5 \div 10=\frac{315}{10} \times \frac{1}{10}=\frac{315}{100}=3.15$
Similarly, $31.5 \div 100=\frac{315}{10} \times \frac{1}{100}=\frac{315}{1000}=0.315$
Let us see if we can find a pattern for dividing numbers by 10,100 0r 1000. This may help us in dividing numbers by 10,100 or 1000 in a shorter way.

$31.5 \div 10=3.15$	$231.5 \div 10=_$	$1.5 \div 10=_$	$29.36 \div 10=_$
$31.5 \div 100=0.315$	$231.5 \div 100=_$	$1.5 \div 100=_$	$29.36 \div 100=_$
$31.5 \div 1000=0.0315$	$231.5 \div 1000=_$	$1.5 \div 1000=_$	$29.36 \div 1000=_$

Take $31.5 \div 10=3.15$. In 31.5 and 3.15 , the digits are the same i.e., 3,1 and 5 but the decimal point has shifted in the quotient. To which side and by how many digits? The decimal point has shifted to the left by one place. Note that 10 has one zero over one.

Consider now $31.5 \div 100=0.315$ and in 0.315 the digits are the same, but what about the decimal point in the quotient? It has shifted to the left by two places. Note that 100 has two zeros over 1.

So we can say that, while dividing a number by 10, 100 or 1000,

TRY THESE
Find: (i) $235.4 \div 10$
(ii) $235.4 \div 100$
(iii) $235.4 \div 1000$ the digits of the number and the quotient are same, but the decimal
point in the quotient shifts to the left by as many places as there are zeroes over one.
Using this observation let us now quickly find: $2.38 \div 10=.0238,2.38 \div 100=0.0238$, $2.38 \div 1000=0.00238$

TRY TESES

$$
\begin{array}{ll}
\text { (i) } & 35.7 \div 3=? ; \\
\text { (ii) } & 25.5 \div 3=\text { ? }
\end{array}
$$

2.7.2 Division of a Decimal Number by a whole Number

Let us find $\frac{6.4}{2}$. Remember we also write it as $6.4 \div 2$.
So, $6.4 \div 2=\frac{64}{10} \div 2=\frac{61}{10} \times \frac{1}{2}$ as learnt in fractions.

$$
=\frac{64 \times 1}{10 \times 2}=\frac{1 \times 64}{10 \times 2}=\frac{1}{10} \times \frac{64}{2}=\frac{1}{10} \times 32=\frac{32}{10}=3.2
$$

Or, let us first divide 64 by 2 . we get 32 . There is one digit to the right of the decimal point in 6.4. Place the decimal in 32 such that there would be one digit to its right. We get 3.2 again.

To find $19.5 \div 5$, first find $195 \div 5$. We get 39 . There is one digit to the right of the decimal point in 19.5. Place the decimal point in 39 such that there would be one digit to its right. You will get 3.9

Now, $12.96 \div 4=\frac{1296}{100} \div 4=\frac{1296}{100} \times \frac{1}{4}=\frac{1}{100} \times \frac{1296}{4}=\frac{1}{100} \times 324=3.24$
Or, divide 1296 by 4. You will get 324 . There are two digits to the right of the decimal in 12.96. Making similar placement of the decimal in 324 , you will get 3.24.

Note that here in the next section, we have considered only those divisions in which, ignoring the decimals, the number would be completely divisible by another number to give remainder zero. Like, in $19.5 \div 5$, the number 195 when divided with 5 , leaves remainder zero.

However, there are situations in which the number may not be completely divisible by another number, i.e, we may not get remainder zero. For example, $195 \div 7$.

Thus, $40.86 \div 6=6.81$

TRY THESE

Find: (i) $1505 \div 5$
(ii) $126.35 \div 7$

Example 9

Find the average of 4, 2, 3, 8 and 7.6.

Solution

The average of 4.2, 3.8 and 7.6 is $\frac{4.2+3.8+7.6}{3}=\frac{15.6}{3}=5.2$.

2.7.3 Division of a Decimal Number by another Decimal Number

Let us find $\frac{25.5}{0.5}$ i.e., $25.5 \div 0.5$
We have $25.5 \div 0.5=\frac{255}{10}+\frac{5}{10}=\frac{255}{10} \times \frac{10}{5}=51$. Thus, $25.5 \div 0.5=51$
What do you observe? For $\frac{25.5}{0.5}$, we find that there is one digit to the right of the decimal in 0.5 . This could be converted to whole number by dividing 10. Accordingly 25.5 was also converted to a fraction by dividing by 10 .
Or, we say the decimal point was shifted by one place to the right in 0.5 to make it 5 . So, there was a shift of one decimal point to the right in 25.5 also to make it 255 .

Thus, $22.5 \div 1.5=\frac{22.5}{1.5}=\frac{225}{15}=15$
Find $\frac{20.3}{0.7}$ and $\frac{15.2}{0.8}$ in a similar way.

TRY THESE

Find: (i) $\frac{7.75}{0.25} \quad$ (ii) $\frac{42.8}{0.02} \quad$ (iii) $\frac{5.6}{1.4}$

Let us now find $205.5 \div 15$, as we
discussed above. We get 13.7. Find $\frac{3.96}{0.4}, \frac{2.31}{0.3}$.

Consider now, $\frac{33.725}{0.25}$. We can write it as $\frac{3372.5}{25}$ (How?) and we get the quotient as
134.9. How will you find $\frac{27}{0.03}$? We know that 27 can be written as 27.0

So, $\quad \frac{27}{0.03}=\frac{27.00}{0.03}=\frac{2700}{3}=$?

Example 10

Each side of a regular polygon is 2.5 cm in length. The perimeter of the polygon is 12.5 cm . How many sides does the polygon have?

Solution

The perimeter of a regular polygon is the sum of the length of all its equal sides $=$ 12.5 cm .

Length of each side $=2.5 \mathrm{~cm}$. Thus, the number of sides $=\frac{12.5}{2.5}=\frac{125}{25}=5$
The polygon has 5 sides.

Example 11

A car covers a distance of 89.1 km in 2.2 hours. What is the average distance covered by it in 1 hour?

Solution

Distance covered by the car $=89.1 \mathrm{~km}$.
Time required to cover the distance $=2.2$ hours.
So distance covered by it in 1 hour $=\frac{89.1}{2.2}=\frac{891}{22}=40.5 \mathrm{~km}$.

Exercise 2.7

1. Find:
(i) $0.4 \div 2$
(ii) 0.35 v 5
(iii) $2.48 \div 4$
(iv) 65.4 v 6
(v) $651.2 \div 4$
(vi) $14.49 \div 7$
(vii) $3.96 \div 4$
(viii) $0.08 \div 5$
(ix) $448 \div 0.7$
(x) $73.6 \div 4$
2. Find:
(i) $4.8 \div 10$
(ii) $0.35 \div 5$
(iii) $0.7 \div 10$
(iv) $33.1 \div 10$
(v) $272.23 \div 10$
(vi) $0.56 \div 10$
(vii) $3.97 \div 10$
(viii) $3.069 \div 10$
(ix) $43.3 \div 100$
(x) $0.5 \div 10$
3. Find:
(i) $2.7 \div 100$
(ii) $0.3 \div 100$
(iii) $0.78 \div 100$
(iv) $432.6 \div 100$ (vi) $23.6 \div 100 \quad$ (vii) $98.53 \div 100$
4. Find:
(i) $7.9 \div 1000$
(ii) $26.3 \div 1000$
(iii) $38.53 \div 1000$
(iv) $128.9 \div 1000$
(v) $0.5 \div 1000$
5. Find
(i) $7 \div 3.5$
(ii) $36 \div 0.2$
(iii) $3.25 \div 0.5$
(iv) $30.94 \div 0.7$
(v) $0.5 \div 0.25$
(vi) $7.75 \div 0.25$
(vii) $76.5 \div 0.15$ (viii) $37.8 \div 1.4$
(ix) $2.73 \div 1.3$
6. A vehicle covers a distance of 43.2 km in 2.4 litres of petrol. How much distance will it cover in one litre of petrol?
7. Find the average:

3, 6, 7, 4, 2, 9, 4.4

What Have We Discussed

1. We have learnt about fractions and decimals alongwith the operations of addition and subtraction on them, in the earlier class.
2. We now study the operations of multiplication and division on fractions as well as on decimals.
3. We have learnt how to multiply fractions. Two fractions are multiplied by multiplying their numerators and denominators separately and writing the product as $\frac{\text { product of numerators }}{\text { product of denominators }}$. For example, $\frac{2}{3} \times \frac{5}{7}=\frac{2 \times 5}{3 \times 7}=\frac{10}{21}$.
4. A fraction acts as an operator. of f^{6}. For example, $\frac{1}{2}$ of 2 is $\frac{1}{2} \times 2=1$.
5. (a) The product of two proper fractions is less than each of the fractions that are multiplied.
(c) The product of a proper and an improper fraction is less than the improper fraction and greater than the proper fraction.
(d) The product of two improper fractions is greater than the two fractions.
6. A reciprocal of a fraction is obtained by inverting it upside down.
7. We have seen how to divide two fractions.
(a) While dividing a whole number by a fraction, we multiply the whole number with the reciprocal of that fraction.
For example, $2 \div \frac{3}{5}=2 \times \frac{5}{3}=\frac{10}{3}$
(b) While dividing a fraction by a whole number we multiply by the reciprocal of the whole number
For example, $\frac{2}{3} \div 7=\frac{2}{3} \times \frac{1}{7}=\frac{2}{21}$
(c) While dividing one fraction by another fraction, we multiply the first fraction by the reciprocal of the other. So, $\frac{2}{3} \div \frac{5}{7}=\frac{2}{3} \times \frac{7}{5}=\frac{14}{15}$.
8. We also learnt how to multiply two decimal numbers. While multiplying two decimal numbers, first multiply them as whole numbers. Count the number of the digits to the right of the decimal point in both the decimal numbers. Add the number of digits counted. Put the decimal point in the product by counting the digits from its rightmost place. The count should be the sun obtained earlier.
For example, $0.5 \times 0.7=0.35$.
9. To multiply a decimal number by 10,100 or 1000 , we move the decimal point in the number to the right by as many places as there are zeroes over 1.
10. We have seen how to divide decimal numbers.
(a) To divide a decimal number by a whole number, we first divide them as whole numbers. Then place the decimal point in the quotient as in the decimal number. For example, $8.4 \div 4=2.1$
Note that here we consider only those divisions in which the remainder is zero.
(b) To divide a decimal number by 10,100 or 1000 , shift the digits in the decimal number to the left by as many places as there are zeros over 1 , to gat the quotient.
So, $23.9 \div 10=2.39,23.9 \div 100=0.239,23.9 \div 1000=0.0239$
(c) While dividing two decimal numbers, first shift the decimal points to the right by equal number of places in both, to convert the divisor to a whole number. Then divide. Thus, $2.4 \div 0.2=24 \div 2=12$.

DATA HANDLING

Chapter 3

3.1 Introduction

You must have observed your teacher recording the attendance of students in your class everyday or recording marks obtained by you after every test or examination. Similarly, you must have also seen a cricket score board. Two score boards have been illustrated here:

Name of the bowler	Overs	Maiden overs	Runs given	Wickets taken
\mathbf{A}	$\mathbf{1 0}$	$\mathbf{2}$	$\mathbf{4 0}$	$\mathbf{3}$
\mathbf{B}	$\mathbf{1 0}$	$\mathbf{1}$	$\mathbf{3 0}$	$\mathbf{2}$
\mathbf{C}	$\mathbf{1 0}$	$\mathbf{2}$	$\mathbf{2 0}$	$\mathbf{1}$
\mathbf{D}	$\mathbf{1 0}$	$\mathbf{1}$	$\mathbf{5 0}$	$\mathbf{4}$

Name of the Batsmen	Runs	Balls Faced	Times(in mins)
\mathbf{E}	$\mathbf{4 5}$	$\mathbf{6 2}$	$\mathbf{7 5}$
\mathbf{F}	$\mathbf{5 5}$	$\mathbf{7 0}$	$\mathbf{8 1}$
\mathbf{G}	$\mathbf{3 7}$	$\mathbf{5 3}$	$\mathbf{6 7}$
\mathbf{H}	$\mathbf{2 2}$	$\mathbf{4 1}$	$\mathbf{5 5}$

You know that simply winning or losing a game is not the only information that is recorded. In the score board, you will also find some very useful information about the game which is equally important. For instance, you may find out the time taken and number of balls faced by the highest run scorer.

Similarly, in your day to day life, you must have seen several kinds of tables consisting of numbers, figures, names etc.

These tables provide _Data‘. A data is a collection of numbers gathered to give some information.

3.2 Recording Data

Let us take an example of class which is preparing to go for a picnic. The teacher asked the students to give their choice of fruits out of Banana, Apple, Orange or Guava. Iram is asked to prepare the list. She prepared a list of all the children and wrote the choice of fruit against each name. This list would help the teacher to distribute fruits according to the choice.

Zaffar	Banana	Dawood	Apple
Fatima	Apple	Uma	Banana
Aamir	Guava	Maria	Apple
Iqbal	Orange	Zaira	Banana
Yasir	Apple	Ulfat	Orange
Preeti	Banana	Sameena	Guava
Basit	Orange	Yunis	Apple
Irfan	Guava	Kavita	Banana
Salma	Banana	Jasmeet	Guava
Javaid	Banana	Balbir	Banana

If the teacher wants to know the numbers of bananas required for the class, she has to read the names of the list one by one and count the total number of bananas required. To know the number of apples, Guavas and oranges separately she has to repeat the same process for each of these fruits. How tedious and time consuming it is! It might become more tedious if the list has, say, 50 students. So, Iram writes only the names of these fruits one by one like, Banana, Apple, Guava, Orange,
 Apple, Banana, Orange, Guava, Banana, Banana, Apple, Banana, Apple, Banana, Orange, Guava, Apple, Banana, Guava, Banana. Do you think this makes the teacher's work easier? She still has to count the fruits in the list one by one as she did earlier. Salma has another idea. She makes four squares on the floor. Every Square is kept for fruits of one kind only. She asks the students to put one pebble in the square which matches their choices. That is, a student opting fro banana will put a pebble in the square marked fro banana and so on.

By counting the pebbles in each square, Iram can quickly tell the number of each kind of fruit required. She can get the required information quickly by systematically placing the pebbles in different squares. Try to perform this activity for 40 students and with names of any four fruits. Instead of pebbles you can also use bottles caps or some other token.

3.3 Organisation of Data

To get the same information which Salma got, Irfan needs only a pen and a paper. He does not require pebbles. He also does not ask students to come and place the pebbles .He prepares the following table.

Banana	\checkmark							
Orange	\checkmark	\checkmark	\checkmark				$\mathbf{8}$	
Apple	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		3	
Guava	\checkmark	\checkmark	\checkmark	\checkmark		5		

Do you understand Irfan's table?
What does one (3) mark indicate?
Four students preferred Guava. How many (3) marks are there against Guava?
How many students were there in the class? Find out all these information's.
Discuss about these methods. What is the best? Why?
Which method is more useful when the information from a much larger data is required?

Example 1

A teacher wants to know the choice of food of each student as part of mid-day meal programme. The teacher assigns the task of collecting this information to Maria .Maria does so using paper and pencil. After arranging the choices in a column, she puts the choice of food for students using one stick (1) as a mark

Choice	Number of students														
Rice only	\|														
Chapatti only															
Both Rice and Chapatti	\|														

Umar, after seeing the above table suggested a better method to count the students. He asked Maria to organize the marks (1) in a group of ten as shown below:

Choice	Number of students
Rice only	IIIIIIIII
Chapatti only	

Raju made it simpler by asking her to make groups of five instead of ten, as shown below.

Choice	Number of students	
Rice only	1111111111	17
Chapattionly	1111111111	13
Both Rice and Chapatti		20

Teacher suggested that the fifth mark in each group of five marks should be used as the cross, as shown by $\mathbb{N W}$.

These are Tally marks. Thus, $|\mathbb{N}| \mid$ shows the count is
five plus two (i.e., seven) and NW shows five plus five (i.e., ten)

With this, the table looks like:

Choice	Number of students	
Rice only		17
Chapatti only		
Both Rice and Chapatti		13

Example 2

5	4	7	5	6	7	6	5	6	6	5
4	5	6	8	7	4	6	5	6	4	6
5	7	6	7	5	7	6	4	8	7	

Javaid wanted to know (i) the size of shoes worn by maximum number of students, (ii) the size of shoes worn by least number of students. Can you find this information?

Fiza prepared a table using tally marks.

Shoe size	Tally Marks	Number of students
4	+	5
5	N 11	8
6	NN MN	10
7	NN	7
8	I	2

Now the question asked earlier could be answered easily, you can also do some such activity in your class using tally marks.

Do This

1. Rukaiya used a dice and noted the number which appeared after throwing it. She repeated the exercise 40 times and noted the
 number every time as shown below.

1	3	5	6	6	3	5	4	1	6
2	5	3	4	6	1	5	5	6	1
1	2	2	3	5	2	4	5	5	6
5	1	6	2	3	5	2	4	1	5

Make a table and enter the data using tally marks.
Now, you can find out the number (or numbers)
(a) Which appeared the minimum number of times?
(b) Which appeared the maximum number of times?
(c) Which appeared same number of times?

Numbers	Tally marks	How many times
$\mathbf{1}$		
2		
3		
4		
5		
6		

3.4 Pictograph

A cupboard has five compartments. In each compartment a row of books is Arranged .The details are indicated as follows:

Which row has the greatest number of books? Which row has the least number of books? is there any row which does not have books?

You can answer the questions by just studying the diagram. The picture visually helps you to understand the data. It is a pictograph.

A pictograph represents data the from of pictures, objects or parts of object. It helps answer the questions on the data at a glance.

3.5 Interpretation of a pictograph

Example 3

The following pictograph gives details of the number of absentees in a particular class of 30 students during the previous week:
(a) On which day was the maximum number of students absent?

Monday				
Tuesday				
Wednesday				
Thursday				
Friday				
Saturday				

(b) Which day saw 100% attendance?
(c) What was the total number of absentees in that week?

Solution

(a) Maximum number of absentees were on Saturday. (There are 8 pictures in the row of Saturday representing this data; on all other days, the numbers of pictures are less).
(b) Against Thursday, there is no picture. This means, on that day there were no absentees.Thus, on that day the class had 100% attendance.
(c) There all 20 pictures in all. So, the total number of absentees in that week were 20.

Example 4

A survey carried out in a certain school to find about different modes of transport used by students to travel to school each day. 30 students of class VI were interviewed and the data obtained was displayed in the form of a pictograph.
Mode of Travelling

Looking at the above pictograph, quickly answer the following Questions:
(a) What is the number of students who use scooter as a mode of travel? Since one symbol represents one student, so symbols represent four students who are using scooter as a mode of transport.
(b) Similarly can you find the number of students using cycle or walking as a mode of travel?
(c) Which is the most popular mode of travel?

Example 5

Following is the pictograph of the number of wrists watches manufactured by a factory, in a particular week.

(a) On which day were the least number of wrist watches manufactured?
(b) On which day was maximum number of wrist watches manufactured?
(b) Find out the appropriate number of wrist watches manufactured in this particular week?

We can complete the following table and find the answers.

Days	Number of wristwatches manufactured
Monday	300
Tuesday	More than 350 and less than 400
Thursday	$\ldots \ldots \ldots \ldots \ldots .$.
Friday	$\ldots \ldots \ldots \ldots \ldots .$.
Saturday	$\ldots \ldots \ldots \ldots \ldots \ldots$.

EXERCISE 3.1

1. In a mathematics test the following marks were obtained by 40 students Arrange these marks in a table using tally marks.

8	1	3	7	6	5	5	4	4	2
4	9	5	3	7	1	6	5	2	7
7	3	8	4	2	8	9	5	8	6
7	4	5	6	9	6	4	4	6	6

(a) Find how many students obtained marks equal to or more than 7 ?
(b) How many students obtained marks below 4.

2 Following is the choice of sweets of 30 students of class VI
Ladoo, Barfi, Ladoo, Jalebi, Ladoo, Rasgulla
Jalebi, Ladoo, Barfi, Rasgulla Ladoo, Jalebi
Jalebi, Rasgulla, Ladoo, Rasgulla, Jalebi, Ladoo
Rasgulla, Ladoo, Ladoo, Barfi, Rasgulla, Rasgulla
Jalebi, Rasgulla, Ladoo, Rasgulla, Jalebi Ladoo.
(a) Arrange the names of sweets in a table using tally marks.
(b) Which sweet is preferred by most of the students?
3. Following pictograph shows the number of tractors in five villages:

Observe the pictograph and answer the following questions.
(i) Which village has the minimum number of tractors?
(ii) Which village has the maximum number of tractors?
(iii) How many more tractors village C has as compared to village B.
(iv) What is the total number of tractors in all the five villages?
4. The sale of electric bulbs on different days of a week is shown below:

Observe the pictograph and answer the following questions?
(a) How many bulbs were sold on Friday?
(b) On which day were the maximum number of bulbs sold?
(c) If one bulb was sold at the rate of Rs 10 .What was the total sale on Sunday?
(d) Can you find out the total sale of the week?
(e) If one big carton can hold 9 bulbs. How many Cartons were needed in the given week.

5．The number of girl students in each class of a co－educational middle School is depicted by the pictograph：

Class	有䱽－4 Girls
I	
II	
III	
IV	
V	
VI	
VII	
VIII	葛倉

Observe this pictograph and answer the following questions：
（a）Which class has the minimum number of girl students？
（b）Is the number of girls in class VI less than the number of girls in Class V？
（c）How many girls are there in class VII？
6．In a village six fruit merchants sold the following number of fruit baskets in a particular season．

Observe the pictograph and answer the following questions:
(a) Which merchant sold the maximum number of baskets?
(b) How many fruit baskets were sold by Aslam?
(c) The merchants who have sold 600 or more number of baskets are planning to buy a godown for the next season. Can you name them?

3.6 Drawing a Pictograph

Drawing a pictograph is interesting. But sometimes a symbol like (which was used in one of the previous examples) may represent multiple units and may be difficult to draw. Instead of it we can use simple symbols.

Q If represents say 5 students, how will you represent, say 4 or 3 students?
We can solve such a situation by making an assumption that-

And then start the task of representation.

Example 6

The following are the details of number of students in a class of 30 , present during a week. Represent it by a pictograph

Day	Number of students present
Monday	24
Tuesday	26
Wednesday	28
Thursday	30
Friday	29
Saturday	22

Solution

With the assumptions we have made earlier,
24 may be represented by
26 may be represented by

Thus, the pictograph would be
Tuy

We had some sort of agreement over how to represent less than 5^{\prime} by a picture. Such a sort of splitting the picture may not be always possible. In such cases what shall we do?

Study the following examples.

Example 7

The following are the number of electric bulbs purchased for a lodging house, during the first four months of a year.

Month	Number of students
January	10
February	13
March	15
April	17

Represents the details by a pictograph.
Solution Let $\stackrel{\text { 息 represents } 5 \text { bulbs. }}{\hookleftarrow}$.

Picturising for January and March is not difficult. But representing 13 and 17 with the pictures is not easy. However, we have shown this detail somewhat roughly. Note that, when studying such pictographs interpretations may differ from person to person. However, a general' view of the situation can be guessed.

1. Total number of animals in five villages are as follows:

Village A:	80
Village B:	120
Village C:	90
Village D:	40
Village E:	60

Prepare a pictograph of these animals using one symbol \otimes to represent to Animals and answer the following questions:
(a) How many symbols represent animals of villages E?
(b)Which village has the maximum number of animals?
(c) Which village has more animals: village A or village C?
2. Total number of students of a school I different years is shown in the following table.

$\frac{\text { Year }}{}$	Number of Students
1996	$\mathbf{4 0 0}$
1998	535
2000	472
2002	600
2004	623

A. Prepare a pictograph of students using one symbol \uparrow to represent 100 students And answer the following questions.
(a) How may symbols represent total number of students in the year 2002?
(b) How many symbols represent total number of students for the year 1998 ?
B. Prepare another pictograph of students using any other symbol each representing 50 students. Which pictograph do you find ore informative?

Arithmetic Mean

The most common representative value of a group of data is the arithmetic mean or the mean. To understand this in a better way, let us look at the following example:

Two vessels contain 20 litres and 60 litres of milk respectively. What is the mount that each vessel would have, if both share the milk equally? When we ask this question we are seeking the arithmetic mean.

In the above case, the average or the arithmetic mean would be

$$
\frac{\text { Total quantity of milk }}{\text { Number of vessels }}=\frac{20+60}{2} \text { litres }=40 \text { litres }
$$

Thus, each vessels would have 40 litres of milk.
The average or Arithmetic Mean (A.M.) or simply mean is defined as follows:

$$
\text { mean }=\frac{\text { Sum of all observations }}{\text { number of observations }}
$$

Consider these examples.

Example 1

Anees studies for 4 hours, 5 hours and 3 hours respectively on three consecutive days. How many hours does he study daily on an average?

Solution

The average study time of Anees would be $\frac{\text { Total number of study hours }}{\text { number of days for which he studied }}=\frac{4+5+3}{3}$ hours $=4$ hours per da y
Thus, we can say that Anees studies for 4 hours daily on an average.

Example 2

A batsman scored the following number of runs in six innings:

$$
36,35,50,46,60,55
$$

Calculate the mean runs scored by him in an inning.

Solution

Total runs $=36+35+50+46+60+55=282$.
To find the mean, we find the sum of all the observations and divide it by the number of observation.
Therefore, in this case, mean $=\frac{282}{6}=47$. Thus, the mean runs scored in an inning are 47.

Where does the arithmetic mean lie
TRY THESE

How would you find the average of your study hours for the whole week?

Think, Discuss And Write

Consider the data in the above examples and think on the following:

* Is the mean bigger than each of the observations?
* Is it smaller than each observation?

Discuss with your friends. Frame one more example of this type and answer the same questions.
You will find that the mean lies in between the greatest and the smallest observations.
In particular, the mean of two numbers will always lie between the two numbers
For example the mean of 5 and 11 is $\frac{5+11}{2}=8$, which lies between 5 and 11 .
Can you use this idea to show that between any two fractional numbers, you can find as many fractional numbers as you like. For example between $\frac{1}{2}$ and $\frac{1}{4}$ you have their average
$\frac{\frac{1}{2}+\frac{1}{4}}{2}=\frac{3}{8} \quad$ and then between $\frac{1}{2}$ and $\frac{3}{8}$, you have their average $\frac{7}{16}$ and so on.

TRY THESE

1. Find the mean of your sleeping hours during one week.
2. Find atleast 5 numbers between $\frac{1}{2}$ and $\frac{1}{3}$.

3.2.1 Range

The difference between the highest and the lowest observation gives us an idea of the spread of the observations. This can be found by subtracting the lowest observation from the highest observation. We call the result the range of the observation. Look at the following example:

Example 3

The ages in years of 10 teachers of a school are:

$$
23,41,28,54,35,26,23,33,38,40
$$

(i) What is the age of the oldest teacher and that of the youngest teacher?
(ii) What is the range of the ages of the teachers?
(iii) What is the mean age of these teachers?

Solution

(i) Arranging the ages in ascending order, we get:
$23,26,28,32,33,35,38,40,41,54$
We find that the age of the oldest teacher is 54 years and the age of the youngest teacher is 23 years.
(ii) Range of the ages of the teachers $=64-23$ years $=31$ years.
(iii) Mean age of the teachers

$$
\begin{aligned}
& =\frac{23+26+28+32+33+35+38+40+41+54}{10} \text { years } \\
& =\frac{350}{10} \text { years }=35 \text { years }
\end{aligned}
$$

Exercise 3.3

1. Find the range of heights of any ten students of your class.
2. Organise the following marks in a class assessment, in a tabular form.
$4,6,7,5,3,5,4,5,2,6,2,5,1,9,6,5,8,4,6,7$
(i) Which number is the highest?
(ii) Which number is the lowest?
(iii) What is the range of the data?
(iv) Find the arithmetic mean.
3. Find the mean of the first five whole numbers.
4. A cricketer scores the following runs in eight innings:

$$
58,76,40,35,46,45,0,100
$$

Find the mean scores.
5. Following table shows the points each player scored in four games:

Player	Game $\mathbf{1}$	Game $\mathbf{2}$	Game $\mathbf{3}$	Game $\mathbf{4}$
\mathbf{A}	14	16	10	10
B	0	8	6	4
\mathbf{C}	8	11	Did not Play	13

Now answer the following questions:
(i) Find the mean to determine A's average number of points scored per game.
(ii) To find the mean number of points per game for C , would you divide the total points by 3 or by 4 ? Why?
(iii) B played in all four games. How would find the mean?
(iv) Who is the best performer?
6. The marks (out of 100) obtained by a group of students in a science test are 85,76 , $90,85,39,48,56,95,81$ and 75 . Find the:
(i) Highest and the lowest marks obtained by the students.
(ii) Range of the marks obtained.
(iii) Mean marks obtained by the group.
7. The enrolment in a school during six consecutive years was as follows:

1555, 1670, 1750, 2013, 2540, 2820
Find the mean enrolment of the school for this period.
8. The rainfall (in mm) in a city on 7 days of a certain week was recorded as follows:

Day	Mon	Tue	Wed	Thurs	Fri	Sat	Sun
Rainfall (in mm)	0.0	12.2	2.1	0.0	20.5	5.5	1.0

(i) Find the range of the rainfall in the above data.
(ii) Find the mean rainfall for the week.
(iii) On how many days was the rainfall less than the mean rainfall.
9. The heights of 10 girls were measured in cm and the results are as follows: $135,150,139,128,151,132,146,149,143,141$.
(i) What is the height of the tallest girl?
(ii) What is the height of the shortest girl?
(iii) What is the range of the data?
(iv) What is the mean height of the girls?
(v) How many girls have heights more than the mean height.

3.6 Mode

As we have said Mean is not the only measure of central tendency or the only form of representative value. For different requirements from a data, other measures of central tendencies are used.

Look at the following example

To find out the weekly demand for different sizes of shirt, a shopkeeper kept records of sales of sizes $90 \mathrm{~cm}, 95 \mathrm{~cm}, 100 \mathrm{~cm}, 105 \mathrm{~cm}, 110 \mathrm{~cm}$. Following is the record for week:

Size (in inches)	90 cm	95 cm	100 cm	105 cm	110 cm	Total
Number of shirts sold	8	22	32	37	6	105

If he found the mean number of shirts sold, do you think that he would be able to decide which shirt size to keep in stock?

Mean of total shirts sold $=\frac{\text { Total number of shirtssold }}{\text { Number of differentsizes of shirts }}=\frac{105}{5}=21$
Should he obtain 21 shirts of each size? If he does so, will he be able to cater to the needs of the costumers?

The shopkeeper, on looking at the record, decides to procure shirts of sizes $95 \mathrm{~cm}, 100$ $\mathrm{cm}, 105 \mathrm{~cm}$. He decided to postpone the procurement of the shirts of other sizes because of their small number of buyers.

Look at another example

The owner of readymade dress shop says, - We most popular size of dress I sell is the size 90 cm .

Observe that here also, the owner is concerned about the number of shirts of different sizes sold. This is another representative value for the data. The highest occurring event is the sale of size 90 cm . This representative value is called the mode of the data.

The mode of a set of observations is the observation that occurs most often.

Example 4

Find the mode of the given set of numbers: $1,1,2,4,3,2,1,2,2,4$

Solution

Arranging the numbers with same values together, we get
$1,1,1,2,2,2,2,3,4,4$
Mode of this data is 2 because it occurs more frequently than other observations.

3.6.1 Mode of Large Data

Putting the same observation together and counting them is not easy if the number of observations is large. In such cases we tabulate the data. Tabulation can begin by putting tally marks and finding the frequency, as you did in your previous class.

Look at the following example:

Example 5

Following are the margins of victory in the football matches of a league.
$1,3,2,5,1,4,6,2,5,2,2,2,4,1,2,3,1,1,2,3,2$,
$6,4,3,2,1,1,4,2,1,5.3,3,2,3,2,4,2,1,2$
Find the mode of this data.

Solution

Let us put the data in a tabular form:

Margins of Victory	Tally Bars	Number of matches		
1	HHH \\|ll	9		
2	HHH HHH 1111	14		
3	HH111	7		
4	HH	5		
5	\|			3
6	\|		2	
	Total	40		

Looking at the table, we can quickly say the _mode‘ since 2 has occurred the highest number of times. Thus, most of the matches have been won with a victory margin of 2 goals.

Think, Discuss And Write

Can a set of numbers have more than one mode?

Example 6

Find the mode of the numbers: $2,2,2,3,3,4,5,5,5,6,6,8$

Solution

Here, 2 and 5 both occur three times. Therefore, they both are modes of the data

ФO THI®

1. Record the age in years of all your classmates. Tabulate the data and find the mode.
2. Record the heights in centimeters of your classmates and find the mode.

TRY THESE

1. Find the mode of the following data:
$12,14,12,16,15,13,14,18,19,12,14,15,16,15,16,16,15$
$17,13,16,16,15,15,13,15,17,15,14,15,13,15,14$
2. Heights (in cm) of 25 children are given below:
$168,165,163,160,163,161,162,164,163,162,164,163,160,163,160$
$165,163,162,163,164,163160,165,163,162$

Whereas mean gives us the average of all observations of the data, the mode gives that observation which occurs most frequently in the data.

Let us consider the following examples:
(a) You have to decide upon the number of chapattis needed for 25 people called for a feast.
(b) A shopkeeper selling shirts has decided to replenish her stock.
(c) We need to find the height of the door needed in our house.
(d) When going on a picnic, if only one fruit can be bought for everyone, which is the fruit that we would get.
In which of these situations can we use the mode as a good estimate?
Consider the first statement. Suppose the number of chapattis needed by each person is $2,3,2,3,2,1,2,3,2,2.4,2,2,3,2,4,4,2,3,2,4,2,4,3,5$
The mode of the data is 2 chapattis. If we use mode as the representative value for this
 data, then we need 50 chapattis only, 2 for each of the 25 persons. However the total number would clearly be inadequate. Would mean be an appropriate representative value?

For the third statement the height of the door is related to the height of the persons
using that door. Suppose there are 5 children and 4 adults using the door and the height of each of 5 children is around 135 cm . The mode for the heights is 135 cm . Should we get a door that is 144 cm high? Would all the adults be able to go through that door? It is clear that mode is not the appropriate representative value for this data. Would mean be an appropriate representative value here?

Why not? Which representative value of height should be used to decide the door height?

Similarly analyse the rest of the statements and find the representative value useful for
that issue.

TRY THESE

Discuss with your friends and give
(a) Two situations where mean would be an appropriate representative value to use, and
(b) Two situations where mode be an appropriate representative value to use.

3.7 MEDIAN

We have seen that in some situations, arithmetic mean is an appropriate measure of central tendency whereas in some other situations, mode is the appropriate measure of central tendency.

Let us now look at another example. Consider a group of 17 students with the following heights (in cm): 106,110,123,125,117,120,112,115, 110,120,115,102,115,115,109, 115, 101.

The games teacher wants to divide the class into two groups so that each group has equal number of students, one group has students with height lesser than a particular height and the other group has students with heights greater than the particular height. How would she do that?

Let us see the various options she has:
(i) She can find the mean. The mean is
$\frac{106+110+123+125+117+120+115+110+120+115+102+115+115+109+115+101}{17}$
$=\frac{1930}{17}=113.5$
So, if the teacher divides the students into two groups on the basis of this mean height, such that one group has students of height less than the mean height and the other group has students with height more than the mean height, then the groups would be of unequal size. They would have 7 and 10 members respectively.
(ii) The second option for her is to find mode. The observation with highest frequency is 115 cm , which would be taken as mode.

There are 7 children below the mode and 10 children at the mode and above the mode. Therefore, we cannot divide the group into equal parts.

Let us therefore think of an alternative representative value or measure of central tendency. For doing this we again look at the given heights (in cm) of students arrange them in ascending order. We have the following observations:
$101,102,106,109,110,110,112,115,115,115,115,115,117,120,120,123,125$
The middle value in this data is 115 because this value divides the students into two equal groups of 8 students each. This value is called as Median. Median refers to the
value which lies in the middle of the data (when arranged in an increasing or decreasing order) with half of the observations above it and the other half below it. The games teacher decides to keep the middle student as a referee in the game.

Here, we consider only those cases where number of observations is odd.

Thus, in a given data, arranged in ascending or descending order, the median gives us the middle observation.

TRY THESE

Your friend found the median and the mode of a given data. Describe and correct your friends error if any:

35,32,35,42,38,32,34
Median $=42$, Mode $=32$

Note that in general, we may not get the same value for median and mode. Thus we realise that mean, mode and median are the numbers that are the representative values of a group of observations or data.
They lie between the minimum and maximum values of the data. They are also called the measures of the central tendency.

EXAMPLE 7
Find the median of the data: $24,36,46,17,18,25,35$

SOLUTION

We arrange the data in ascending order, we get $17,18,24,25,35$,
 36, 46 Median is the middle observation. Therefore 25 is the median.

Exercise 3.4

1. The scores in mathematics test (out of 25) of 15 students is as follows:

$$
19,25,23,20,9,20,15,10,5,16,25,20,24,12,20
$$

Find the mode and median of this data. Are they same?
2. Find the mode of the data:

$$
6,5,7,3,7,5,2,9,7,8,4
$$

3. Find the mode of the data:

$$
13,15,19,18,13,19,13,17,19,11,15,16,10
$$

4. Find the mean and median of the given data:
$11,12,15,9,16,11,6,13,12$.
Find also the mode. Are mean, median and mode equal?
5. The weight (in kg) of 17 students of class $8^{\text {th }}$ are:

$$
37,41,28,45,39,37,40,36,43,36,38,29,43,32,36,34,37 .
$$

Find the
(i) Mode and median of this data.
(ii) Find the mean.
6. In an IPL, -20-20 cricket match, the run scored b 11 players of Indian team are: $50,10,0,15,120,80,60,16,8,15,10$.
Find the mean, mode and median of the data. Are the three same?
7. Tell whether the statement is true or false:
(i) The mode is always one of the numbers in a data.
(ii) The mean is one of the numbers in a data.
(iii) The median is always one of the numbers in a data.
(iv) The data $6,4,3,8,9,12,13,9$ has mean 9 .

3.8 A Bar Graph

Representing data by pictograph is not only time consuming but at times difficult too. Let us see some other ways of representing data visually. Bars of uniform width can be erected horizontally or vertically with equal spacing between them and then the length of each bar represents the given number.

Such method of presenting data is called bar diagram or a bar graph.

3.8.1 Interpretation of a Bar Graph

Let us look at the example of vehicular traffic at a busy road crossing in Delhi, which was studied by the traffic police on a particular day. The number of vehicles passing through the crossing every hour from 6 am to 12.00 noon is shown in the bar graph. One unit is symbolically shown as a box. [unit = one]

Number of vehicles
The scale is + unit length equal to 100 vehicles".
We can see that maximum traffic shown by the longest bar (i.e., 1200 vehicles) for the time interval 7-8 am. The next longer bar is between 8-9 am.

Similarly minimum traffic shown by the smallest bar (i.e, 100 vehicles) for time interval 6-7 am . The bar next to the smallest bar is between 11-12.

The total traffic during the two peak hours (8.00-10.00-am) (for schools, offices and business establishments) as shown by the two long bars is $1000+900=1900$ vehicles.

If the numbers in the data are large, then you may need a different scale. For example, take the case of the growth of the population of India. The numbers are in crores. So, if you take 1 unit length to be one person, drawing the bars will not be possible. Therefore, choose the scale as 1 - unit to represent 10 crore. The bar graph for this case is shown in the figure given below.

So the bar length 5 units represents 50 crore and of 8 units represents 80 crores.

Example 8

Read the following bar graph of a particular class of a school.
Answer the following questions:
(a) What is the scale of this graph?
(b) How many new students are added?
(c) Is the number of students in the year 2003 twice that in the year 2000 ?

Solution

(a) The scale is 1 unit length equals 10 students.

Try (b) and (c) for yourself

ФO THI®

Read the following bar graph.

Now answer the following questions:
(a) What is the information given by the bar graph?
(b) Which oil refinery produces maximum oil?
(c) Name oil refineries which produce oil less than 4 lakh tonnes.
(d) How much oil is produced by Mumbai oil refinery?

3.8.2 Drawing a Bar Graph

Recall the example where Irfan had prepared a table representing choice of fruits made by his classmates.

Name of fruit	Banana	Orange	Apple	Guava
Number of students	8	3	5	4

First of all draw a horizontal line and a vertical line. On the horizontal line we will draw bars representing each fruit and on vertical line we will write numerals representing number of students.

Let us choose a scale. It means we first decide how many students will be represented by unit length of a bar.

Here we take 1 unit length to represent 1 student only.

We get a bar graph as shown below.

Fruits

Example 9

Following table shows the monthly expenditure of Javaid‘s family on various items.

Items	Expenditure (in Rs)
House Rent	3000
Food	3400
Education	800
Electricity	400
Transport	600
Miscellaneous	1200

To represent this data in the form of a bar diagram, here are the steps.
(a) Draw two perpendicular lines, one vertical and one horizontal.
(b) Along the horizontal line mark the _items‘ and along the vertical line mark the corresponding expenditure.
(c) Take bars of same width keeping uniform gap between them.
(d) Choose suitable scale along the vertical line. Let 1 unit length= Rs 200 and then mark the corresponding values.

Calculate the heights of the bars for various items as shown below.

House rent: $\quad 3000 \div 200=15$ units
Food: $\quad 3400 \div 200=17$ units
Education: $\quad 800 \div 2004$ units
Electricity: $\quad 400 \div 200=2$ units
Transport: $\quad 600 \div 200=3$ units
Miscellaneous: $\quad 1200 \div 200=6$ units

Same data can be expressed by interchanging positions of items and expenditure as shown below:

Following table shows the number of trees planted after every two years in a city during the year 1994-2004.

Years		Number of trees planted
1994	-	3000
1996	-	2000
1998	-	4000
2000	-	5000
2002	-	6000
2004		3000

Express this data in the form a bar graph, 1 unit length $=500$ trees.

Solution:

Mark information _Years‘ along horizontal line and the number of trees along the vertical line. Now find heights of the bars.

Complete the bar graph by drawing remaining bars. From this bar graph locate, (i) the year in which maximum number of trees were planted (ii) the year in which minimum number of trees were planted.

3.8.3 Drawing Double Bar Graph

Consider the following two collections data giving the average daily hours of sunshine in two cities Aberdeen and Margate for all the twelve months of the year. These cities are near the south pole and hence have only a few hours of sunshine each day.

In Margate												
	Jan.	Feb.	Mar.	April.	May.	June.	July.	Aug.	Sep.	Oct.	Nov.	Dec.
Average hours of Sunshine	2	$3 \frac{1}{4}$	4	4	$7 \frac{3}{4}$	8	$7 \frac{1}{2}$	7	$6 \frac{1}{4}$	6	4	2
In Aberdeen												
Average hours of Sunshine	$1 \frac{1}{2}$	3	$3 \frac{1}{2}$	6	$5 \frac{1}{2}$	$6 \frac{1}{2}$	$5 \frac{1}{2}$	5	$4 \frac{1}{2}$	4	3	1 $\frac{3}{4}$
By drawing individual bar graphs you could answer questions like (i) In which month does each city has maximum sunlight? or (ii) In which months does each city has minimum sunlight?												

However, to answer questions like fm a particular month, which city has more sunshine hours", we need to compare the average hours of sunshine of both the cities. To do this we will learn to draw what is called a double bar graph giving the information of both cities side by side.

This bar graph (Fig 3.1) shows the average sunshine of both the cities.
For each month we have two bars, the heights of which give the average hours of sunshine in each city. From this we can infer that except for the month of April, there is always more sunshine in Margate than in Aberdeen. You could put together a similar bar graph for your area or for your city.

Fig. 3.1
Let us look at another example more related to us.

Example 10

A mathematics teacher wants to see, whether the new technique of teaching she applied after quarterly test was effective or not. She takes the scores of the 5 weakest children in the quarterly test (out of 25) and in the half yearly test (out of 25):

Students	Aarif	Aslam	Khalid	Maria	Razia
Quarterly	10	15	12	20	9
Half yearly	15	18	16	21	15

Solution

She draws the adjoining double bar graph and finds a marked improvement in most of the students, the teacher decides that she should continue to use the new technique of teaching.

Can you think of a few more situations where you could use double bar graphs?

TRY THESE

1. The bar graph (Fig 3.2) shows the result of a survey to test water resistant watches made by different companies.
Each of these companies claimed that their watches were water resistant. After a test the results revealed.

Fig 3.2
(a) Can you work out a fraction of the number of watches that leaked to the number tested for each company?
(b) Could you tell on this basis which company has better watches?
2. Sale of English and Hindi books in the year 1995, 1996, 1997 and 1998 are given below:

Years	1995	1996	1997	1998
English	350	400	450	620
Hindi	500	525	600	650

Draw a double bar graph and answer the following question:
(a) In which year was the difference in the sale of the two language book least?
(b) Can you say that the demand for English books rose faster? Justify?

Exercise 3.5

1. Use the bar graph (Fig 3.3) to answer the following questions.
(a) Which is the most popular pet?
(b) How many students have a dog as a pet?

Fig 3.3

Fig 3.4
2. Read t bar graph (Fig. 3.4) which shows the number of books sold by a bookstore during five consecutive years and answer the following questions:
(i) About how many books were sold in 1989? 1990? 1992?
(ii) In which year were about 475 books sold? About 225 books sold?
(iii) In which years were fewer than 250 books sold?
(iv) Can you explain how you would estimate the number of books sold in1989?
3. Numbers of children in six different classes are given below. Represent the data on a bar graph.

Class	Fifth	Sixth	Seventh	Eighth	Ninth	Tenth
Number of Children	135	120	95	100	90	80

(a) How would you choose a scale?
(b) Answer the following questions:
(i) Which class has the maximum number of children? And the minimum?
(ii) Find the ratio of students of class sixth to the students of class eight.
4. The performance of a student in $1^{\text {st }}$ Term and $2^{\text {nd }}$ Term is given. Draw a double bar graph choosing appropriate scale and answer the following:

Subject	English	Urdu	Math's	Science	S. Science
$1^{\text {st }}$ Term (M.M.100)	67	72	88	81	73
$2^{\text {nd }}$ Term (M.M.100)	70	65	95	85	75

(i) In which subject, has the child improved his performance the most?
(ii) In which subject is the improvement the least?
(iii) Has the performance gone down in any subject?
5. Consider this data collected from a survey of a colony?

Favorite Sport	Cricket	Basket Ball	Swimming	Hockey	Athletics
Watching	1240	470	510	430	250
Participating	620	320	320	250	105

(i) Draw a double bar graph choosing an appropriate scale.
(ii) Which sport is most popular?
(iii) Which is more preferred, watching or participating in sports?
6. Take the data giving the minimum and the maximum temperature of various cities given in the beginning of this chapter (Table 3.1). Plot a double bar graph using the data and answer the following:
(i) Which city has the largest difference in the minimum and maximum temperature on the given data?
(ii) Which is the hottest city and which is the coldest city?
(iii) Name two cities where maximum temperature of one was less than minimum temperature of the other.
(iv) Name the city which has the least difference between its minimum and the maximum temperature.

3.9 Chance and Probability

These words often come up in our daily life. We often say, there is no chance of it raining today" and also say things like it is quite probable that India will win the World Cup." Let us try and understand these terms a bit more. Consider the statements;
(i) The Sun coming up from the West
(ii) An ant growing to 3 m height.
(iii) If you take a cube of larger volume its side will also be larger.
(iv) If you take a circle with larger area then its radius will also be larger.
(v) India winning the next test series.

If we look at the statements given above you would say that the Sun coming up from the West is impossible, an ant growing to 3 m is also not possible. On the other hand if the circle is of a larger area it is certain that it will have a larger radius. You can say the same about the larger volume of the cube and the larger side. On the other hand India can win the next test series or lose it. Both are possible.

3.9.1 Chance

TRY THESE

Think of some situations, atleast 3 examples of each, that are certain to happen, some that are impossible and some that may or may not happen i.e., situations that have some chance of happening.

If you toss a coin, can you always correctly predict what you will get? Try tossing a coin and predicting the outcome each time. Write your observations in the following table:

Do this 10 times. Look at the observed outcomes. Can you see a pattern in them? What do you get after each head? Is it that you get head all the time? Repeat the observation for another 10 tosses and write the observations in the table.

You will find that the observations show no clear pattern. In the table below we give you observations generated in 25 tosses by Asmaa and Saika. Here H represents Head and T represents Tail.

| Numbers | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Outcome | H | T | T | H | T | T | T | H | T | T | H | H | H | H | H |
| Numbers | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | | | | | |
| Outcome | T | T | H | T | T | T | T | T | T | T | | | | | |

What does this data tell you? Can you find a predictable pattern for head and tail? Clearly there is no fixed pattern of occurrence of head and tail. When you throw the coin each time the outcome of every throw can be either head or tail. It is a matter of chance that in one particular throw you get either of these.

In the above data, count the number of heads and the number of tails. Throw the coin some more times and keep recording what you obtain. Find out the total number of times you get a head and the total number of times you get a tail.

You also might have played with a die. The die has six faces. When you throw a die, can you predict the number that will be obtained? While playing ludo or snake and ladders you may have often wished that in a throw you get a particular outcome.

Does the die always fall according to your wishes? Take a die and throw it 150 times and fill the data in the following table:

Number on Die	Tally Marks	Number of Times it Occurred
1		
2		

Make a tally mark each time you get the outcome, against the appropriate number. For example in the first throw you get 5 . Put a tally in front of 5 . The next throw gives you 1 . Make a tally for 1 . Keep on putting tally marks for the appropriate number. Repeat this exercise for 150 throws and find out the number of each outcome for 150 throws.

Make bar graph using the above data showing the number of times 1, 2, 3, 4, 5, 6 have occurred in the data.

TRY THESE

(Do in a group)

1. Toss a coin 100 times and record the data. Find the number of times heads and tails occur in it.
2. Ahsaan threw a die 250 times and got the following table. Draw a bar graph for this data.

Number on the Die	Tally Marks
1	
2	
3	
4	
5	
6	

3. Throw the die 100 times and record the data. Find the number of times 1 , $2,3,4,5,6$, occur.

What is probability?

We know that when a coin is thrown, it has two possible outcomes, Head or Tail and for a die we have 6 possible outcomes. We also know from experience that for a coin, Head or Tail is equally likely to be obtained. We say that the probability of getting Head or Tail is equal and is $\frac{1}{2}$ for each.
For a die, possibility of getting either of $1,2,3,4,5$ or 6 is equal. That is for a die there are 6 equally likely possible outcomes. We say each of $1,2,3,4,5,6$ has

TRY THESE

Construct or

think of five situations
where outcomes do not have equal chances one-sixth $\left(\frac{1}{6}\right)$ probability. We will learn about this in the later classes. But from what we have done, it may perhaps be obvious that events that have many possibilities can have probability between 0 and 1 . Those which have no chance of happening have probability 0 and those that are bound to happen have probability 1 . Given any situation we need to understand the different possible outcomes and study the possible chances for each outcome. It may be possible that the outcomes may not have equal chance of occurring unlike the cases of the coin and die. For example, if a container has 5 red balls and 9 white balls and if a ball is pulled out without seeing, the chances of getting a white ball are much more. Can you see why? How many times are the chances of getting a red ball than getting a white ball, probabilities for both being between 0 and 1 .

Exercise 3.6

1. Tell whether the following is certain to happen, impossible, can happen but not certain.
(i) You are older today than yesterday. (ii) A tossed coin will land heads up.
(ii) A die when tossed shall land up with 8 on top.
(iii) The next traffic light seen will be green. (v) Tomorrow will be a cloudy day.
2. There are 6 marbles in a box with numbers from 1 to 6 marked on each of them.
(i) What is the probability of drawing a marble with number 2 ?
(ii) What is the probability of drawing a marble with number 5?
3. A coin is flipped to decide which team starts the game. What is the probability that your team will start?

What Have We Discussed

1. The collection, recording and presentation of data help us organise our experiences and draw inferences from them.
2. Before collecting data we need to know what we would use it for.
3. The data that is collected needs to be organised in a proper table, so that it becomes easy to understand and interpret.
4. Average is a number that represents or shows the central tendency of a group of observations or data.
5. Arithmetic mean is one of the representative values of data.
6. Mode is another form of central tendency or representative value. The mode of a set of observations is the observation that occurs most often.
7. Median is also a form of representative value, It refers to the value which lies in the middle of the data with half of the observations above it and the other half below it.
8. A bar graph is a representation of numbers using bars of uniform widths.
9. Double bar graphs help to compare two collections of data at a glance.
10. There are situations in our life, that are certain to happen, some that are impossible and some that may or may not happen. The situation that may or may not happen has a chance of happening.

Simple Equations

Chapter 4

4.1 A Mind-Reading Game!

The teacher has said that she would be starting a new chapter in mathematics and it is going to be simple equations. Raju, Saima and Ambreen have revised what they learnt in algebra chapter in Class VI. Have you? Raju, Saima and Ambreen are excited because they have constructed a game which they call mind reader and they want to present it to the whole class.

The teacher appreciates their enthusiasm and invites them to present their game. Ambreen begins; she asks Sara to think of a number, multiply it by 4 and add 5 to the product. Then, she asks Sara to tell the result. She says it is 65 . Ambreen instantly declares that the number Sara had thought of is 15 . Sara nods. The whole class including Sara is surprised.

It is Raju's turn now. He asks Babloo to think of a number, multiply it by 10 and subtract 20 from the product. He then asks Babloo what his result is? Babloo says it is 50 . Raju immediately tells the number thought by Babloo. It is 7, Babloo confirms it.

Everybody wants to know how the _mind reader' presented by Raju, Saima and Ambreen works. Can you see how it works? After studying this chapter and chapter 12, you will very well know how the game works.

4.2 Setting Up Of an Equation

Let us take Ambreen's example. Ambreen asks Sara to think of a number. Ambreen does not know the number. For her, it could be anything 1, 2, 3,... $11, \ldots, 100$ Let us denote this unknown number by a letter, say x. You may use y or t or some other letter in place of x. It does not matter which letter we use to denote the unknown number Sara has thought of. When Sara multiplies the number by 4 , she gets $4 x$. She then adds 5 to the product, which gives $4 x+5$. The value of $(4 x+5)$ depends on the value of x. Thus if $x=1,4 x+5=4 \times 1+$ $5=9$. This means that if Sara had 1 in her mind, her result would have been 9 . Similarly, if she thought of 5 , then for $x=5,4 x+5=4 \times 5+5=25$; Thus if Sara had chosen 5 , the result would have been 25 .

To find the number thought by Sara let us work backward from her answer 65 . We have to find x such that

$$
\begin{equation*}
4 x+5=65 \tag{4.1}
\end{equation*}
$$

Solution to the equation will give us the number which Sara held in her mind.
Let us similarly look at Raju's example. Let us call the number Babloo chose as y. Raju asks Babloo to multiply the number by 10 and subtract 20 from the product. That is, from y, Babloo first gets 10 y and from there $(10 y-20)$. The result is known to be 50 .

Therefore,

$$
\begin{equation*}
10 y-20=50 \tag{4.2}
\end{equation*}
$$

The solution of this equation will give us the number Babloo had thought of.

4.3 Review of What We Know

Note, (4.1) and (4.2) are equations. Let us recall what we learnt about equations in Class VI. An equation is a condition on a variable. In equation (4.1), the variable is x; in equation (4.2), the variable is y.

The word variable means something that can vary, i.e. change. A variable takes on different numerical values; its value is not fixed. Variables are denoted usually by letters of the alphabets, such as $x, y, z, 1, m, n, p$, etc. From variables, we form expressions. The expressions are formed by performing operations like addition, subtraction, multiplication and division on the variables. From x, we formed the expression $(4 x+5)$. For this, first we multiplied x by 4 and then added 5 to the product. Similarly, from y, we formed the expression $(10 y-20)$. For this, we multiplied y by 10 and then subtracted 20 from the product. All these are examples of expressions.

The value of an expression thus formed depends upon the chosen value of the variable. As we have already seen, when $\mathrm{x}=1,4 x+5=9$; when $\mathrm{x}=5,4 x+5=25$. Similarly,
when

$$
x=15,4 x+5=4 \times 15+5=65
$$

when $\quad x=0,4 x+5=4 \times 0+5=5$; and so on.
Equation (4.1) is a condition on the variable x. It states that the value of the expression $(4 x+5)$ is 65 . The condition is satisfied when $x=15$. It is the solution to the equation $4 x+5$ $=65$. When $x=5,4 x+5=25$ and not 65 . Thus $x=5$ is not a solution to the equation. Similarly, $x=0$ is not a solution to the equation. No value of x other than 15 satisfies the condition $4 x+5=65$.

TRY THESE

The value of the expression $(10 y-20)$ depends on the value of y. Verify this by giving five different values to y and finding for each y the value of $(10 y-20)$. From the different values of $(10 y-20)$ you obtain, do you see a solution to $10 y-20=50$? If there no solution, try giving more values to y and find whether the condition $10 y-20=50$ is met.

4.4 What Equation Is?

In an equation there is always an equality sign. The equality sign shows that the value of the expression to the left of the sign (the left hand side or LHS) is equal to the value of the expression to the right of the sign (the right hand side or RHS). In equation (4.1), the LHS is $(4 x+5)$ and the RHS is 65 . In equation (4.2), the LHS is (by -20) and the RHS is 50.

If there is some other sign other than the equality sign between LHS and the RHS, it is not an equation. Thus, $4 x+5>65$ is not an equation.

It says that, the value of $4 x+5$ is greater than 65 .
Similarly, $4 x+5<65$ is not an equation. It says that the value of $\mathbb{4} x+5$ is smaller than 65.

In equations, we often find that the RHS is just a number. In Equation (4.1), it is 65 and in equation (4.2), it is 50 . But this need not be always so. The RHS of an equation may be an expression containing the variable. For example, the equation

$$
4 x+5=6 x-25
$$

has the expression $(4 x+5)$ on the left and $(6 x-25)$ on the right of the equality sign.
In short, an equation is a condition on a variable. The condition is that two expressions should have equal value. Note that at least one of the two expressions must contain the variable.

We also note a simple and useful property of equations. The equation $4 x+5=65$ is the same as $65=4 x+5$. Similarly, the equation $6 x-25=4 x+5$ is the same as $4 x+5=6 x-25$. An equation remains the same, when the expressions on the left and on the right are interchanged. This property is often useful in solving equations.

Example 1

Write the following statements in the form of equations:
(i) The sum of three times x and 11 is 32 .
(ii) If you subtract 5 from 6 times a number, you get 7 .
(iii) One fourth of m is 3 more than 7.
(iv) One third of a number plus 5 is 8 .

SOLUTION

(i) Three times x is $3 x$.

Sum of $3 x$ and 11 is $3 x+11$. The sum is 32 .
The equation is $3 x+11=32$.
(ii) Let us say the number is z; z multiplied by. 6 is $6 z$. Subtracting 5 from $6 z$, one gets $6 z-5=7$ The result is 7 .
The equation is $6 z-5=7$
(iii) One fourth of m is $\frac{m}{4}$.

It is greater than 7 by 3 . This means the difference $\left(\frac{m}{4}-7\right)$ is 3 .
The equation is $\quad \frac{m}{4}-7=3$.

(iv) Take the number to be n. One third of n is $\frac{n}{3}$.

The one-third plus 5 is $\frac{n}{3}+5$.
The equation is $\frac{n}{3}+5=8$.

Example 2

Convert the following equation in statement from:
(i) $x-5=9$
(ii) $5 \mathrm{p}=20$
(iii) $3 n+7=1$
(iv) $\frac{m}{5}-2=6$

Solution

(i) Taking away 5 from x gives 9 .
(ii) 5 times a number p is 20 .
(iii) Add 7 to three times n to get 1 .
(iv) You get 6, when you subtract 2 from one-fifth of a number m.

What is important to note is that for a given equation, not just one, but many statement forms can be given. For example (i) above, you can say:
Subtract 5 from x , you get 9 .

TRY THESE

Write atleast one other
form for each equation
(ii), (iii) and (iv).
or The number x is 5 more than 9 .
or The number x is greater by 5 than 9 .
or the difference between x and 5 is 9 , and so on.

Example 3

Consider the following situation:
Hamid's father's age is 5 years more than three times Hamid's age. Hamid's father is 44 years old. Set up an equation to find Hamid‘s age.

SOLUTION

We do not know Hamid‘s age. Let us take it to be y years. Three times Hamid‘s age is $3 y$ years. Hamid‘s father's age is 5 years more than $3 y$; that is, Hamid‘s father is $(3 y+5)$ years old. It is also given that Hamid's father is 44 years old.

Therefore, $\quad 3 y+5=44$
This is an equation in y. It will give Hamid's age when solved.
Example 4
A shopkeeper sells mangoes in two types of boxes, one small and one large. A large box contains as many as 8 small boxes plus 4 loose mangoes. Set up an equation which gives the number of mangoes in each small box. The number of mangoes in a large box is given to be 100.

Solution

Let a small box contain m mangoes. A large box contains 4 more than 8 times m, that is, $8 m$ +4 mangoes. But this is given to be 100 . Thus

$$
\begin{equation*}
8 m+4=100 \tag{4.4}
\end{equation*}
$$

You can get the number of mangoes in a small box by solving this equation.

Exercise 4.1

1. Complete the last column of the table.

S. No.	Equation	Value	Say, whether the Equation is Satisfied. (Yes/No)
(i)	$x+3=0$	$x=3$	
(ii)	$x+3=0$	$x=0$	
(iii)	$x+3=0$	$x=-3$	
(iv)	$x-7=1$	$x=7$	
(v)	$\mathbf{x}-7=1$	$x=8$	
(vi)	$5 x=25$	$x=0$	
(vii)	$5 x=25$	$x=5$	
(viii)	$5 x=25$	$\mathbf{x}=-5$	
(ix)	$\frac{m}{3}=2$	$m=-6$	
(x)	$\frac{m}{3}=2$	$m=0$	
(xi)	$\frac{m}{3}=2$	$m=6$	

2. Check whether the value given in the brackets is a solution to the given equation or not:
(a) $m+6=15(m=6)$
(b) $2 n+7=13(n=3)$
(c) $7 n+5=19(n=2)$
(d) $4 p-3=12(p=4)$
(e) $4 p-3=13(p=-4)$
(f) $4 p+5=21(p=0)$
3. Solve the following equations by trial and error method:
(i) $5 p+2=17$ (ii) $3 x-12=6$
4. Write equations for the following statements:
(i) The sum of numbers x and 4 is 9 .
(ii) 2 subtracted from y is 8
(iii) Ten times a is 70 .
(iv) Three-fourth of t is 15 .
(vii) One-fourth of a number x minus 4 gives 4 .
(viii) If you take away 6 from 6 times y, you get 60 .

(ix) If you add 3 to one-third of z, you get 30 .
(x) Three times a number x subtracted from 4 gives 7 .
5. Write the following equations in statement forms:
(i) $x+4=6$
(ii) $x-7=0$
(iii) $2 m=11$
(v) $\frac{m}{3}=12$
(v) $4 p+3=7$
(vi) $\frac{3 p}{4}-7=15 \quad$ (vii) $6 x-3=10$
6. Set up an equation in the following cases:
(i) Imtiyaz says that he has 7 marbles more than five times the marbles Imran has. Imtiyaz has 37 marbles. (Take m to be the number of Imran's marbles.)
(ii) Gulshan's father is 49 years old. He is 4 years older than three times Gulshan's age. (Take Gulshan's age to be y years.)
(iii) The teacher tells the class that the highest marks obtained by a student in her class is twice the lowest marks plus 7. The highest score is 87 . (Take the lowest score to be l.)
(iv) In an isosceles triangle, the vertex angle is twice either base angle. (Let the base angle be b in degrees. Remember that the sum of angles of a triangle is 180 degrees).

4.4.1 Solving an Equation

Consider an equality

$$
\begin{equation*}
8-3=4+1 \tag{4.5}
\end{equation*}
$$

The equality (4.5) holds, since both its sides are equal (each is equal to 5).

- Let us now add 2 to both sides; as a result
$\mathbf{L H S}=8-3+2=5+2=3 \quad$ RHS $=4+1+2=5+2=7$.
Again the equality holds (i.e., its LHS and RHS are equal).
Thus if we add the same number to both sides of an equality, it still holds.
- Let us now subtract 2 from both the sides; as a result,
$\mathbf{L H S}=8-3-2=5-2=3 \quad$ RHS $=4+1-2=5-2=3$.
Again, the equality holds.
Thus if we subtract the same number from both sides of an equality, it still holds.
- Similarly, if we multiply or divide both sides of the equality by the same non-zero number it still holds.

For example, let us multiply both the sides of the equality by 3 , we get
LHS $=3 \times-3=3 \times 5=15$, RHS $=3 \times 4+1=3 \times 5=15$.
The equality holds.

Let us now divide both sides of the equality by 2 .
LHS $=-3 \div 2=5 \div 2=\frac{5}{2}$
$\mathbf{R H S}=4+1 \div 2=5 \div 2=\frac{5}{2}=\mathbf{L H S}$
Again, the equality holds.

If we take any other equality, we shall find the same conclusions.
Suppose, we do not observe these rules. Specificially, suppose we add different numbers, to the two sides of an equality. We shall find in this case that the equality does not hold (i.e., its both sides are not equal). For example, let us take again equality (4.5),

$$
8-3=4+1
$$

add 2 to the LHS and 3 to the RHS. The new LH5 is $8-3+2=5+2=7$ and the new RHS is $4+1+3=5+3=8$. The equality does not hold, because the new LHS and RHS are not equal.

Thus we fail to do the same mathematical operation on both sides of an equality, the equality does not hold.
The equality that involves variables is an equation.

These conclusions are also valid for equations, as in each equation variable represents a number only.

Often an equation is said to be like a weighing balance. Doing a mathematical operation on an equation is like adding weights to or removing weights from the pans of a weighing balance.

An equation is like a weighing balance with equal weights on both its pans, in which case the arm of the balance is exactly horizontal. If we add the same weights to both the pans, the arm remains horizontal. Similarly, if we remove the same weights from both the pans, the arm remains horizontal. On the other hand if we add different weights to the pans or remove different weights from them, the balance is tilted; that is, the arm of the balance does not remain horizontal.

We use this principle for solving an equation. Here, ofcourse, the balance is imaginary and numbers can be used as weights that can be physically balanced against each other. This is the real purpose in presenting the principle. Let us take some examples.

- Consider the equation: $x+3=8$

We shall subtract 3 from both sides of this equation.
The new LHS is $x+3-3=\mathrm{x}$ and the new RHS is $8-3=5$

Why should we subtract 3 , and not some other number? Try adding 3. Will it help? Why not?

It is because subtracting 3 reduces the LHS to x.

Since this does not disturb the balance, we have
New LHS $=$ New RHS \quad or $\quad x=5$
which is exactly what we want, the solution of the equation (4.6).
To confirm whether we are right, we shall put $x=5$ in the original equation. We get
LHS $=x+3=5+3=8$, which is equal to the RHS as required.
By doing the right mathematical operation (i.e., subtracting 3) on both the sides of the equation, we arrived at the solution of the equation.

- Let us look at another equation

$$
\begin{equation*}
x-3=10 \tag{4.7}
\end{equation*}
$$

What should we do here? We should add 3 to both the sides, by doing so, we shall retain the balance and also the LHS will reduce to just x.
New LHS $=x-3+3=x$, New RHS $=10+3$ $=13$ Therefore, $x=13$, which is the required solution. By putting $x=13$ in the original equation (4.7) we confirm that the solution is correct:
LHS of original equation $=x-3=13-3=10$.
This is equal to the RHS as required.

- Similarly, let us look at the equations

$$
\begin{align*}
5 y & =35 \tag{4.8}\\
\frac{m}{2} & =5 \tag{4.9}
\end{align*}
$$

In the first case, we shall divide both the sides by 5 . This will give us just y on LHS
New LHS $=\frac{5 y}{5}=\frac{5 \times y}{5}=y, \quad$ New RHS $=\frac{35}{5}=\frac{5 \times 7}{5}=7$
Therefore,

$$
y=7
$$

This is the required solution. We can substitute $y=7$ in Eq. (4.8) and check that it is satisfied. In the second case, we shall multiply both sides by 2 . This will give us just m on the LHS

The new LHS $=\frac{m}{2} \times 2=m$. The new $\mathbf{R H S}=5 \times 2=10$.
Hence, $m=10$ (It is the required solution. You can check whether the solution is correct).
One can see that in the above examples, the operation we need to perform depends on the equation. Our attempt should be to get the variable in the equation separated. Sometimes, for doing so we may have to carry out more than one mathematical operation. Let us solve some more equations with this in mind.

Example 5
Solve: (a) $3 n+7=25$

$$
\begin{equation*}
\text { (b) } 2 p-1=23 \tag{4.10}
\end{equation*}
$$

Solution

(a) We go stepwise to separate the variable n on the LHS of the equation. The LHS is $3 n$ +7 . We shall first subtract 7 from it so that we get $3 n$. From this, in the next step we shall divide by 3 to get n. Remember we must do the same operation on both sides of the equation. Therefore, subtracting 7 from both sides,

$$
\begin{equation*}
3 n+7-7=25-7 \tag{Step1}
\end{equation*}
$$

or

$$
3 n=18
$$

Now divide both sides by 3 ,
or

$$
\begin{equation*}
\frac{3 n}{3}=\frac{18}{3} \tag{Step2}
\end{equation*}
$$

(b) What should we do here? First we shall add 1 to both the sides:
or

$$
\begin{gather*}
2 p-1+1=23+1 \tag{Step1}\\
2 p=24 \tag{Step2}
\end{gather*}
$$

Now divide both sides by 2 , we get $\frac{2 p}{2}=\frac{24}{2}$
or

$$
p=12, \text { which is the solution. }
$$

One good practice you should develop is to check the solution you have obtained. Although we have not done this for (a) above, let us do it for this example.

Let us put the solution $p=12$ back into the equation.

$$
\begin{aligned}
\mathbf{L H S} & =2 p-1=2 \times 12-1=24-1 \\
& =23=\mathbf{R H S}
\end{aligned}
$$

The solution is thus checked for its correctness.
Why do you not check the solution of (a) also?
We are now in a position to go back to the mind-reading game presented by Raju,
Saima, and Ambreen and understand how they got their answers. For this purpose, let us look at the equations (4.1) and (4.2) which correspond respectively to Ambreen's and Raju's
 examples.

- First consider the equation $4 x+5=65$.

Subtracting 5 from both sides, $4 x+5-5=65-5$.
i.e. $\quad 4 x=60$

Divide both sides by 4 ; this will separate x . We get $\frac{4 x}{4}=\frac{60}{4}$
or $\quad x=15$, which is the solution. (Check, if it is correct.)

- Now consider, $10 y-20=50$

Adding 20 to both sides, we get $10 y-20+20=50+20$ or $10 y=70$
Dividing both sides by 10 , we get $\frac{10 y}{10}=\frac{70}{10}$
or $\quad y=7$, which is the solution. (Check if it is correct.)

You will realise that exactly these were the answers given by Raju, Saima and Ambreen. They had learnt to set up equations and solve them. That is why they could construct their mind reader game and impress the whole class. We shall come back to this in Section 4.7.

Exercise 4.2

1. Give first the step you will use to separate the variable and then solve the equation:
(a) $x-1=0$
(b) $x+1=0$
(c) $x-1=5$
(d) $x+6=2$
(e) $y-4=-7$
(f) $y-4=4$
(g) $y+4=4$
2. Give first the step you will use to separate the variable and then solve the equation:
(a) $3 l=42$
(b) $\frac{b}{2}=6$
(c) $\frac{p}{7}=4$
(d) $4 x=25$
(e) $8 y=36$
(f) $\frac{z}{3}=\frac{5}{4}$
(g) $\frac{a}{5}=\frac{7}{15}$
(h) $20 t=-10$
3. Give the steps you will use to separate the variable and then solve the equation:
(a) $3 n-2=46$
(b) $5 m+7=17$
(c) $\frac{20 p}{3}=40$
(d) $\frac{3 p}{10}=6$
4. Solve the following equations:
(a) $10 p=100$
(b) $10 p+10=100$
(c) $\frac{p}{4}=5$
(d) $\frac{-p}{3}=5$
(e) $\frac{-x}{3}=7$
(f) $2 x-5=-7$
(g) $3 x+7=10$
(h) $3 x+6=0$
(i) $2 x-5=5$
(j) $2 k+1=9$
(k) $3 q+9=18$

4.5 More Equations

Let us practise solving some more equations. While solving these equations, we shall learn about transposing a number, i.e., moving it from one side to the other. We can transpose a number instead of adding or subtracting it from both sides of the equation.

Example 6

Solve: $12 p-5=25$

Solution

- Adding 5 on both sides of the equation,

$$
12 p-5+5=25+5 \quad \text { or } \quad 12 p=30
$$

- Dividing both sides by 12 ,

$$
\frac{12 p}{12}=\frac{30}{12} \quad \text { or } \quad p=\frac{5}{2}
$$

Note, adding 5 to both sides is the same as changing side of (-5). $12 p-5=25$
$12 p=25+5$

Check Putting $p=\frac{5}{2}$ in the LHS of equation 4.12,

$$
\begin{aligned}
\mathbf{L H S} & =12 \times \frac{5}{2}-5=6 \times 5-5 \\
& =30-5=25=\mathbf{R H S}
\end{aligned}
$$

As we have seen, while solving equations one commonly used operation is adding or subtracting the same number on both sides of the equation. Transposing a number (i.e., changing the side of the number) is the same as adding or subtracting the number from both sides. In doing so, the sign of the number has to be changed. What applies to numbers also applies to expressions. Let us take two more examples of transposing.

Adding or Subtracting on both sides	Transposing
(i) $3 p-10=5$ Add 10 to both sides	(i) $3 p-10=5$ Transposing (-10) from LHS to RHS
$\begin{aligned} & 3 p-10+10=5+10 \\ & \text { or } \quad 3 p=15 \end{aligned}$	(On transposing - 10 becomes +10). $3 p=5+10$ or $3 p=15$
(ii) $5 x+12=27$	(ii) $5 \mathrm{x}+12=27$
Subtract 12 from both sides	Transposing +12 (On transposing +12 becomes -12)
$5 x+12-12=27-12$	$5 x=27-12$

We shall now solve two more equations. As you can see they involve brackets, which have to be solved before proceeding.

Example 7

Solve
(a) $4(m+3)=18$
(b) $-2(x+3)=8$

Solution

(a) $4(m+3)=18$

Let us divide both the sides by 4 . This will remove the brackets in the LHS we get,
$\mathrm{m}+3=\frac{18}{4} \quad$ or $\quad \mathrm{m}+3=\frac{9}{2}$
or $\quad \mathrm{m}=\frac{9}{2}-3 \quad$ (transposing 3 to RHS)
or $\mathrm{m}=\frac{3}{2}$ (required solution) $\left(\right.$ as $\left.\frac{9}{2}-3=\frac{9}{2}-\frac{6}{2}=\frac{3}{2}\right)$
Check LHS $=4\left[\frac{3}{2}+3\right]=4 \times \frac{3}{2}+4 \times 3=2 \times 3+4 \times 3\left[\right.$ put $\left.m=\frac{3}{2}\right]$

$$
=6+12=18=\text { RHS }
$$

(b) $-2(x+3)=8$

We divide both sides by (-2), so as to remove the brackets in the LHS, we get,
$x+3=-\frac{8}{2} \quad$ or $\quad x+3=-4$
i.e., $x=-4-3 \quad$ (transposing 3 to RHS) or $\quad x=-7 \quad$ (required solution)

Check LHS $=-2<7+3=-2<4$,
$=8=$ RHS as required

4.6 From Solution to Equation

Asif always thinks differently. He looks at successive steps that one takes to solve an equation. He wonders why not follow the reverse path:

Equation \longrightarrow | Solution |
| :--- |
| (normal path) |
| Solution \longrightarrow |

He follows the path given below:
Start with
Multiply both sides by 4,
Subtract 3 from both sides,

$$
\begin{array}{l|l}
\begin{array}{l}
x=5 \\
4 x=20 \\
4 x-3=17
\end{array} & \begin{array}{l}
\text { Divide both sides by } 4 \\
\text { Add } 3 \text { to both sides }
\end{array}
\end{array}
$$

This has resulted in an equation. If we follow the reverse path step, as shown on the right, we get the solution of the equation.

Neelam feels interested. She starts with the same first step and builds up another equation.

$$
x=5
$$

Multiply both sides by $3 \quad 3 x=15$
Add4 to both sides $\quad 3 x+4=19$

Start with $y=4$ and make two different equations. Ask three of your friends to do the same. Are their equations different from yours?

Is it not nice that not only can you solve an equation, but you can make equations? Further, did you notice that given an equation, you get one solution; but given a solution you can make many equations?

Now, Saima wants the class to know what she is thinking. She says, Ψ shall take Neelam‘s equation and put it into a statement form and that makes a puzzle. For example, think of a number; multiply it by 3 and add 4 to the product. Tell me the sum you get.

If the sum is 19 , the equation Neelam got will give us the solution to the puzzle. In fact, we know it is 5 , because Neelam started with it."

She turns to Babloo, Areena and Aarti to check whether they made their puzzle this way. All three say, Yes!"

We now know how to create number puzzles and many other similar problems.

Exercise 4.3

1. Solve the following equations:
(a) $3 x+\frac{7}{2}=\frac{11}{2}$
(b) $5 x+18=8$
(c) $\frac{x}{5}+3=12$
(d)

$$
\frac{r}{7}+2=-1
$$

(e) $6 z+10=-8$
(f) $\frac{3 x}{2}=\frac{3}{4}$
(g) $\frac{2 l}{3}-5=4$
2. Solve the following equations:
(a) $3(x-3)=12$
(b) $3(P+4)=21$
(c) $4(2+x)=8$
(d) $3(2 x+3)=9$
(e) $-4(2+x)=12$
(f) $4(2+x)=10$
3. Solve the following equations:
(a) $3=8(x-3)$
(b) $-5=4(x-2)$
(c) $15=5+2(x+3)$
(d) $4+5(P+1)$
(e) $4(m-6)+15=0$

4.7 Applications of Simple Equations to Practical Situations

We have already seen examples in which we have taken statements in everyday language and converted them into simple equations. We also have learnt how to solve simple equations. Thus we are ready to solve puzzles/problems from practical situations. The method is first to form equations corresponding to such situations and then to solve those equations to give the solution to the puzzles/problems. We begin with what we have already seen [Example 1 (i) and (iii), Section 4.2].

Example 8

The sum of three times a number and 11 is 32 . Find the number.

Solution

- If the unknown number is taken to be x , then three times the number is $3 x$ and the sum of $3 x$ and 11 is 32 . That is, $3 x+11=32$
- To solve this equation, we transpose 11 to RHS, so that $3 \mathrm{x}=32-11 \quad$ or $3 x=21$
Now, divide both sides by 3
This equation was
obtained earlier in
Section 4.2, Example 1.

So $\quad x=\frac{21}{3}=7$
The required number is 7 . (We may check it by taking 3 times 7 and adding 11 to it. It gives 32 as required)

Example 9

Find a number, such that one-fourth of the number is 3 more than 7 .

Solution

- Let us take the unknown number to be y; one-fourth of y is $\frac{y}{4}$.

This number $\left(\frac{y}{4}\right)$ is more than 7 by 3 .
Hence we get the equation for y as $\frac{y}{4}-7=3$

- To solve this equation, first transpose 7 to RHS We get, $\frac{y}{4}=3+7=10$.

We then multiply both sides of the equation by 4 , to get $\frac{y}{4} \times 4=10 \times 4$ or $y=40$ (the required number)
Let us check the equation formed. Putting the value of y in the equation,
$\mathbf{L H S}=\frac{40}{4}-7=10-7=3=$ RHS, as required.

Example 10

Hamid's father‘s age is 5 years more than three times Hamid‘s age. Find Rahul's age, if his father is 44 years old.

Solution

- As given in Example 3 earlier, the equation that gives Hamid's age is

$$
3 y+5=44
$$

- To solve it, we first transpose 5 to get $3 y=44-5=39$

That is, Hamid's age is 13 years (You may check the answer)

Exercise 4.4

1. Set up equations and solve them to find the unknown numbers in the following cases:
(a) The sum of 5 times a number and 6 is 15 .
(b) $\frac{3}{5}$ times a number taken away from 16 , the result is the number itself, what is the number.
(c) If I take three-fourths of a number and add 3 to it, I get 21.
(d) When I subtracted 11 from twice a number, the result was 15 .
(e) Sahil subtracts thrice the number of notebooks he has from 50 , he finds the result to be 8 .
(f) Maria thinks of a number. If she adds 19 to it and divides the sum by 5 , she will get 8 .
(g) When 6 subtracted from thrice a number, the result is 9 . Find the number.
2. Solve the following:
(a) The teacher tells the class that the highest marks obtained by a student in her class is twice the lowest marks plus 7 . The highest score is 87 . What is the lowest score?
(b) In an isosceles triangle, the base angles are equal. The vertex angle is
 40°. What are the base angles of the triangle? (Remember, the sum of three angles of. a triangle is 180°).
(c) Dhoni scored twice as many runs as Yuvraj. Together, their runs fell two short of a double century. How many runs did each one score?
(d) Rajan's mother's age is 6 years more than 3 times Rajan's age. Find Rajan's age if his mother is 45 years old.
3. Solve the following:
(i) Mudasir says that he has 7 marbles more than five times the marbles Amin s. Mudasir has 37 marbles. How many marbles does Amin have?
(ii) Neelam's father is 49 years old. He is 4 years older than three times Neelam's age. What is Neelam's age?
(iii) People of Gulmarg planted trees in the village garden. Some of the trees were fruit trees. The number of non-fruit trees were two more than three times the number of fruit trees. What was the number of fruit trees planted if the number of non-fruit trees planted was 77 ?
4. Solve the following riddle:

I am a number,
Tell my identity!
Take me seven times over
And add a fifty!
To reach a triple century
You still need forty!

What Have We Discussed

1. An equation is a condition on a variable such that two expressions in the variable should have equal value.
2. The value of the variable for which the equation is satisfied is called the solution of the equation.
3. An equation remains the same if the LHS and the RHS are interchanged.
4. Tn case of the balanced equation, if we
(i) add the same number to both the sides, or (ii) subtract the same number from both the sides, or (iii) multiply both sides by the same number, or (iv) divide both sides by the same number, the balance remains undisturbed, i.e., the value of the LHS remains equal to the value of the RHS
5. The above property gives a systematic method of solving an equation. We carry out
a series of identical mathematical operations on the two sides of the equation in such a way that on one of the sides we get just the variable. The last step is the solution of the equation.
6. Transposing means moving to the other side. Transposition of a number has the same effect as adding same number to (or subtracting the same number from) both sides of the equation. When you transpose a number from one side of the equation to the other side, you change its sign. For example, transposing +3 from the LHS to the RHS in equation $x+3=8$ gives $x=8-3(=5)$. We can carry out the transposition of an expression in the same way as the transposition of a number.
7. We have learnt how to construct simple algebraic expressions corresponding to practical situations.
8. We also learnt how, using the technique of doing the same mathematical operation (for example adding the same number) on both sides, we could build an equation starting from its solution. Further, we also learnt that we could relate a given equation to some appropriate practical situation and build a practical word problem/puzzle from the equation.

Chapter 5

5.1 Introduction

You already know how to identify different lines, line segments and angles in a given shape. Can you identify the different line segments and angles formed in the following figures? (Fig 5.1)

Fig 5.1
Can you also identify whether the angles made are acute or obtuse or right?
Recall that a line segment has two end points. If we extend the two end points in either direction endlessly, we get a line. Thus, we can say that a line has no end points. On the other hand, recall that a ray has one end point (namely its starting point). For example, look at the figures given below:

Fig 5.2
Here, Fig 5.2 (i) shows a line segment, Fig 5.2 (ii) shows a line and Fig 5.2 (iii) is that of a ray. A line segment $\mathbf{P Q}$ is generally denoted by the symbol $\mathbf{P Q}$, a line $A B$ is denoted by the
symbol $\overline{\mathbf{A B}}$ and the ray OP is denoted by $\overline{\mathbf{O P}}$. Give some examples of line segments and rays from your daily life and discuss them with your friends.

Again recall that an angle is formed when lines or line segments meet. In Fig 5.1, observe the corners. These corners are formed when two lines or line segments intersect at a point. For example, look at the figures given below:

(i)

(ii)

Fig 5.3
In Fig 5.3 (i) line segments AB and BC intersect at B to form angle ABC , and again line segments BC and AC intersect at C to form angle ACB and so on. Whereas, in Fig 5.3 (ii) lines PQ and RS intersect at O to form four angles POS, SOQ, QOR and ROP. An angle $A B C$ is represented by the symbol \angle ABC . Thus, in Fig 5.3 (i), the three angles formed are $\angle \mathrm{ABC}$, $\angle \mathrm{BCA}$ and $\angle \mathrm{BAC}$, and in Fig 5.3 (ii), the four angles formed are $\angle \mathrm{POS}, \angle \mathrm{SOQ}, \angle \mathrm{QOR}$, and $\angle \mathrm{POR}$. You have already studied how to classify the angles as acute, obtuse or right angle.

Note: While referring to the measure of an angle $A B C$, we shall write $\mathrm{m} \angle \mathrm{ABC}$ as simply $\angle \mathrm{ABC}$. The context will make it clear, whether we ate referring to the angle or its measure.

5.2 RELATED ANGLES

5.2.1 Complementary Angles

When the sum of the measures of two angles is 90°, the angles are called complementary angles.

Fig 5.4

Are these two angles complementary? Yes

Are these two angles complementary?
No

Whenever two angles are complementary, each angle is said to be the complement of the other angle. In the above diagram (Fig 5.4), the $=30^{\circ}$ angle ${ }^{\text {}}$ is the complement of the ${ }_{=} 60^{\circ}$ angle‘ and vice versa.

Think, Discuss AND Write

1. Can two acute angles be complement to each other?
2. Can two obtuse angles be complement to each other?
3. Can two right angles be complement to each other?

TRY THESE

1. Which pair of the following angles are complementary? (Fig 5.5)

2. What is the measure of the complement of each of the following angles?
(i) 45°
(ii) 65°
(iii) 41°
(iv) 54°
3. The difference in the measures of two complementary angles is 12°. Find the measure of the angles.

TRY THESE

1. Find the pairs of supplementary angles in Fig 5.7:

Fig 5.7
2. What will be the measure of the supplement of each of the following angles?
(i) 100°
(ii) 90°
(iii) 55°
(iv) 125°
3. Among two supplementary angles the measure of the larger angle is 44° more than the measure of the smaller. Find their measures.

5.2.2 Supplementary Angles

Let us now look at the following pairs of angle (Fig 5.6):

Do you notice that the sum of the measures of the angles in each of these above pairs (Fig 5.6) comes out to be 180° ? Such pairs are called supplementary angles. When two angles are supplementary, each angle is said to be the supplement of the other.

1. Can two obtuse angles be supplementary?
2. Can two acute angles be supplementary?
3. Can two right angles be supplementary?

5.2.3 Adjacent Angles

Look at the following figures:

When you open a book it looks like the above figure. In A and B, we find a pair of angles, placed next to each other.

Look at this steering wheel of a car. At the centre of the wheel you find three angles being formed, lying next to one another

Fig 5.8
At both the vertices A and B, we find, a pair of angles are placed next to each other.
These angles are such that:
(i) they have a common vertex;
(ii) they have a common arm; and
(iii) the non-common arms are on either side of the common arm.

Such pairs of angles are called adjacent angles. Adjacent angles have a common vertex and a common arm but no common interior points.

TRY THIDSE

1. Are the angles marked 1 and 2 adjacent? (Fig 5.9). If they are not adjacent, say, =why'.

Think, Discuss AND Write

1. Can two adjacent angles be supplementary?
2. Can two adjacent angles be complementary?
3. Can two obtuse angles be adjacent angles?
4. Can an acute angle be adjacent to an obtuse angle?

5.2.4 Linear Pair

A linear pair is a pair of adjacent angles whose non-common sides are opposite rays.

Are $\angle 1, \angle 2$ a linear pair? Yes
Are $\angle 1, \angle 2$ a linear pair? No! (Why?)
In Fig 5.11(i) above, observe that the opposite rays (which are the non-common sides of $\angle 1$ and $\angle 2$ form a line. Thus, $\angle 1+\angle 2$ amounts to 180°.

The angles in a linear pair are supplementary.
Have you noticed models of a linear pair in your environment?
Note carefully that a pair of supplementary angles form a linear pair when placed adjacent to each other. Do you find examples of linear pair in your daily life?

Observe a vegetable table chopping board (Fig 5.12)

A vegetable chopping board The chopping blade makes a linear pair of angles with the board

A pen stand The pen stand makes a linear pair of angles with the stand.

Fig 5.1

Think, Discuss AND Write

1. Can two acute angles form a linear pair?
2. Can two obtuse angles form a linear pair?
3. Can two right angles form a linear pair?

TRY THESE

Check which of the following pairs of angles form a linear pair (Fig 5.13):

Fig 5.13

5.2.4 Vertically Opposite Angles

Next take two pencils and tie them with the help of a rubber band at the middle as shown (Fig 5.14).
Look at the four angles formed $\angle 1, \angle 2, \angle 3$ and $\angle 4$. $\angle 1$ is vertically opposite to $\angle 3$ and $\angle 2$ is vertically opposite to $\angle 4$.
We call $\angle 1$ and $\angle 3$, a pair of vertically opposite angles. Fig 5.14 Can you name the other pair of vertically opposite angles?
Does $\angle 1$ appear to be equal to $\angle 3$? Does $\angle 2$ appear

Fig 5.14 to be equal to $\angle 4$?

Before checking this, let us see some real life examples for vertically opposite angles (Fig 5.15).

Fig 5.15

Фo This

Draw two lines l and m intersecting at a point. You can now mark $\angle 1, \angle 2, \angle 3$ and $\angle 4$ as in the Fig (5.16)
Take a trace copy of the figure on a transparent sheet.
Place the copy on the original such that $\angle 1$ matches with its copy, $\angle 2$ matches with its copy, ... etc.
Fix a pin at the point of intersection. Rotate the copy 180°. Do the lines coincide again?

You find that $\angle 1$ and $\angle 3$ have interchanged their positions and so have $\angle 2$ and $\angle 4$. This has been found without disturbing the position of lines.
Thus, $\angle 1=\angle 2$ and $\angle 2=\angle 4$.
We conclude that when two lines intersect, the vertically opposite angles so formed are equal.
Let us try to prove this using Geometrical Idea.
Let us consider two lines l and m. (Fig 5.17)
We can arrive at this result through logical reasoning as follows: 2
Let l and m be two lines, which intersect at O , making angles $\angle 1, \angle 2, \angle 3$ and $\angle 4$.
We want to prove that $\angle 1=\angle 3$ and $\angle 2=\angle 4$

Now, $\angle 1=180^{\circ}-\angle 2\left(\right.$ Because $\angle 1, \angle 2$ form a linear pair, so, $\left.\angle 1+\angle 2=180^{\circ}\right)$ (i)
Similarly, $\angle 3=180^{\circ}-\angle 2$ (Since $\angle 2, \angle 3$ form a linear pair, so, $\angle 2+\angle 3=180^{\circ}$). (ii)
Therefore, $\angle 1=\angle 3$ [By (i) and (ii)]
Similarly, we can prove that $\angle 2=\angle 4$, (Try it!)

TRY THESE

1. In the given figure, if
$\angle 1=30^{\circ}$, find $\angle 2$ and $\angle 3$.
2. Give an example for vertically opposite in your surroundings.

Example 1

In Fig (5.18) identify:
(i) Five pairs of adjacent angles. (ii) Three linear pairs.
(iii) Two pairs of vertically opposite angles.

SOLUTION

(i) Five pairs of adjacent angles are ($\angle \mathrm{AOE}, \angle$

EOC), $(\angle \mathrm{EOC}, \angle \mathrm{COB}),(\angle \mathrm{AOC}, \angle \mathrm{COB}),(\angle$

$\mathrm{COB}, \angle \mathrm{BOD}),(\angle \mathrm{EOB}, \angle \mathrm{BOD})$
Fig 5.18
(iii) Linear pairs are $(\angle \mathrm{AOE}, \angle \mathrm{EOB}),(\angle \mathrm{AOC}, \angle \mathrm{COB})$,
($\angle \mathrm{COB}, \angle \mathrm{BOD}$)
(iii) Vertically opposite angles are: ($\angle \mathrm{COB}, \angle \mathrm{AOD}$), and ($\angle \mathrm{AOC}, \angle \mathrm{BOD})$

Exercise 5.1

1. Find the complement of each of the following angles:

(i)

(ii)

(iii)
2. Find the supplement of each of the following angles:

3. Identify which of the following pairs of angles are complementary and which are supplementary.
(i) $65^{\circ}, 115^{\circ}$
(ii) $63^{\circ}, 27^{\circ}$
(iii) $112^{\circ}, 68^{\circ}$
(iv) $130^{\circ}, 50^{\circ}$
(v) $45^{\circ}, 45^{\circ}$
(vi) $800,10^{\circ}$
4. Find the angle which is equal to its complement.
5. Find the angle which is equal to its supplement.
6. In the given figure, $\angle 1$ and $\angle 2$ are supplementary angles. If $\angle 1$ is decreased, what changes should take place in $\angle 2$ so that both the
 angles still remain supplementary.
7. Can two angles be supplementary if both of them are:
(i) acute?
(ii) obtuse?
(iii) right?
8. An angle is greater than 45°. Is its complementary angle greater than 45° or equal to or less than 45° ?
9. In the adjoining figure:
(i) Is $\angle 1$ adjacent to $\angle 2$?
(ii) Is $\angle \mathrm{AOC}$ adjacent to $\angle \mathrm{AOE}$?
(iii) Do $\angle \mathrm{COE}$ and $\angle \mathrm{EOD}$ form a linear pair?
(iv) Are $\angle \mathrm{BOD}$ and $\angle \mathrm{DOA}$ supplementary?
(v) Is $\angle 1$ vertically opposite to $\angle 4$?
(vi) What is the vertically opposite angle of $\angle 5$?

10. Indicate which pairs of angles are:
(i) Vertically opposite angles. (ii) Linear pairs.

11. In the following figure, is $\angle 1$ adjacent to $\angle 2$? Give reasons.

12. Find the values of the angles x, y, and z in each of the following:

13. Fill in the blanks:
(i) If two angles are complementary, then the sum of their measures is \qquad .
(ii) If two angles are supplementary, then the sum of their measures is \qquad .
(iii) Two angles forming a linear pair are \qquad , \qquad .
(iv) If two adjacent angles are supplementary, they form a \qquad .
(v) If two lines intersect at a point, then the vertically opposite angles are always
\qquad .
(vi) If two lines intersect at a point, and if one pair of vertically opposite angles are acute angles, then the other pair of vertically opposite angles are \qquad
14. In the adjoining figure, name the following pairs of angles.
(i) Obtuse vertically opposite angles
(ii) Adjacent complementary angles
(iii) Equal supplementary angles D
(iv) Unequal supplementary angles
(v) Adjacent angles that do not form a linear pair

5.3 Pairs of Lines

5.3.1 Intersecting Lines

Fig 5.19
The blackboard on its stand, the letter Y made up of line segments and the grill-door of a window (Fig 5.19), what do all these have in common? They are examples of intersecting lines.
Two lines l and m intersect if they have a point in common. This common point O is their point of intersection.

Think, Discuss AND Write

In Fig 5.20, AC and BE intersect at P .
AC and BC intersect at C, AC and EC intersect at C.
Try to find another ten pairs of intersecting line segments. Should any two lines or line segments necessarily intersect? Can you find two pairs of non-intersecting line segments in the figure? Can two lines intersect in more than one point?

Fig 5.20

Think about it.

TRY THESE

1. Find the example from your surroundings where lines intersect at right angles.
2. Find the measures of the angles made by the intersecting lines at the vertices of an equilateral triangle.
3. Draw any rectangle and find the measures of angles at the four vertices made by the intersecting lines.
4. If two lines intersect, do they always intersect at right angles?

5.3.2 Transversal

You might have seen a road crossing two or more roads or a railway line crossing several other lines (Fig 5.21). These give an idea of a transversal.

A line that intersects two or more lines at distinct points is called a transversal. In the Fig 5.22, p is a transversal to the lines l and m.

Fig 5.22

Fig 5.23

In Fig 5.23 the line p is not a transversal, although it cuts two lines l and m. Can you say, =why"?

5.3.3. Angles made by a Transversal

In Fig 5.24, you see lines l and m cut by transversal p. The eight angles marked 1 to 8 have their special names:

Fig 5.24

TRY THESE

1. Suppose two lines are given. How many transversals can you draw for these lines?
2. If a line is a transversal to three lines, how many points of intersection are there?
3. Try to identify a few transversals in your surroundings.

Interior angles	$\angle 3, \angle 4, \angle 5, \angle 6$
Exterior angles	$\angle 1, \angle 2, \angle 7, \angle 7$
Pairs of Corresponding angles	$\angle 1$ and $\angle 5, \angle 2$ and $\angle 6$ $\angle 3$ and $\angle 7, \angle 4$ and $\angle 8$
Pairs of Alternate interior angles	$\angle 3$ and $\angle 6, \angle 4$ and $\angle 5$
Pairs of Alternate exterior angles	$\angle 1$ and $\angle 8, \angle 2$ and $\angle 7$
Pairs of interior angles on the same side of the transversal	$\angle 3$ and $\angle 5, \angle 4$ and $\angle 6$

Note: Corresponding angles (like $\angle 1$ and $\angle 5$ in Fig 5.25) include (i) different vertices (ii) are on the same side of the transversal and
(iii) are in corresponding' positions (above or below, left or right) relative to the two lines.

Fig 5.25
Alternate interior angles (like $\angle 3$ and $\angle 6$ in Fig 5.26)
(i) have different vertices
(ii) are on opposite sides of the transversal and

(iii) lie between' the two lines.

5.3.3 Transversal of Parallel Lines

Do you remember what parallel lines are? They are lines on a plane that do not meet anywhere. Can you identify parallel lines in the following figures? (Fig 5.27)

Fig 5.27

Transversals of parallel lines give rise to quite interesting results.

Фo This

Take a ruled sheet of paper. Draw (in thick colour) two parallel lines l and m.
Draw a transversal t to the lines land in. Label $\angle 1$ and $\angle 2$ as shown [Fig 528(i)].
Place a tracing paper over the figure drawn. Trace the lines $1, m$ and t.
Slide the tracing paper along t, until l coincides with m.
You find that $\angle 1$ on the traced figure coincides with $\angle 2$ of the original figure.
In fact, you can see all the following results by similar tracing and sliding activity.
(i) $\angle 1=\angle 2$
(ii) $\angle 3=\angle 4$
(iii) $\angle 5=\angle 6$
(iv) $\angle 7=\angle 8$

This activity illustrates the following fact:
If two parallel lines are cut by a transversal, each pair of corresponding angles are equal in measure.

We use this result to get another interesting result. Look at Fig 5.29.
When t cuts the parallel lines, $1, m$, we get, $\angle 3=\angle 7$ (vertically opposite angles).
But $\angle 7=\angle 8$ (corresponding angles). Therefore, $\angle 3=\angle 8$
You can similarly show that $\angle 1=\angle 6$. Thus, we have the following result:

If two parallel lines are cut by a transversal, each pair of alternate interior angles are equal.
This second result leads to another interesting property.
Again, from Fig 5.29.
$\angle 3+\angle 1=180^{\circ}$ ($\angle 3$ and $\angle 1$ form a linear pair)
But $\angle 1=\angle 6$ (A pair of alternate interior angles)

Fig 5.29

Therefore, we can say that $\angle 3+\angle 6=180^{\circ}$.
Similarly, $\angle 1+\angle 8=180^{\circ}$. Thus, we obtain the following result:
If two parallel lines are cut by a transversal, then each pair of interior angles on the same side of the transversal are supplementary.

You can very easily remember these results if you can look for relevant _shapes‘.
The F-shape stands for corresponding angles:

The Z - shape stands for alternate angles.

©o This

Draw a pair of parallel lines and a transversal. Verify the above three statements by actually measuring the angles.

TRY THESE

Lines $l \| m$
t is transversal $\angle x=$?

l_{1}, l_{2} be two lines t is transversal

$$
\text { Is } \angle 1=\angle 2 ?
$$

Lines 1 || m;
t is transversal $\angle z=$?

5.4 Checking For Parallel Lines

If two lines are parallel, then you know that a transversal gives rise to pairs of equal corresponding angles, equal alternate interior angles and interior angles on the same side of the transversal being supplementary.

When two lines are given, is there any method to check if they are parallel or not? You need this skill in many life-oriented situations.

A draftsman uses a carpenter's square and a straight edge (ruler) to draw these segments (Fig 5.30). He claims they are parallel. How?

Fig 5.30

Fig 5.31

Look at the letter Z (Fig 5.31). The horizontal segments here are parallel, because the alternate angles are equal.

When a transversal cuts two lines, such that pairs of alternate interior angles are equal, the lines have to be parallel.

Draw a line 1 (Fig 5.32).
Draw a line m, perpendicular to 1 . Again draw a line p, such that p is perpendicular to m.
Thus, p is perpendicular to a perpendicular to l.
You find $p \| l$. How? This is because you draw p such that $\angle 1+\angle 2=180^{\circ}$.

Thus, when a transversal cuts two 'lines, such that pairs of interior angles on the same side of the transversal are supplementary, the lines have to be parallel.

Fig 5.32

1. State the property that is used in each of the following statements?
(i) If $a \| b$, then $\angle 1=\angle 5$.
(ii) If $\angle 4=\angle 6$, then $a \| b$.
(iii) If $\angle 4+\angle 5=180^{\circ}$, then a $\|$ b.
2. In the adjoining figure, identify
(i) the pairs of corresponding angles.
(ii) the pairs of alternate interior angles.
(iii) the pairs of interior angles on the same side of the transversal.
(iv) the vertically opposite angles.
3. In the adjoining figure. $P \| q$. Find the unknown angles.

4. Find the value of x in each of the following figures if $l \| m$.

(i)

(ii)
5. In the given figure, the arms of two angles are parallel.

If $\angle \mathrm{ABC} 70^{\circ}$, then find
(i) $\angle \mathrm{DGC}$
(ii) $\angle \mathrm{DEF}$

6. In the given figures below, decide whether l is parallel to m.

What We Have Discussed

1. We recall that
(i) A line-segment has two end points.
(ii) A ray has only one end point (its vertex); and
(iii) A line has no end points on either side.
2. An angle is formed when two lines (or rays or line-segments) meet.

Pairs of Angles	Condition
Two complementary angles	Measures add up to 90° Two supplementary angles Two adjacent angles
Linear pair	Have a common vertex and a common arm but no common interior. Adjacent and supplementary

3. When two lines l and m meet, we say they intersect; the meeting point is called the point of intersection.
When lines drawn on a sheet of paper do not meet, however far produced, we call them to be parallel lines.
4. (i) When two lines intersect (looking like the letter \mathbf{X})
we have two pairs of opposite angles. They are called vertically opposite angles. They are equal in measure.
(ii) A transversal is a line that intersects two or more lines at distinct points.
(iii) A transversal gives rise to several types of angles.
(iv) In the figure, we have

Types of Angles	Angles Shown
Interior	$\angle 3, \angle 4, \angle 5, \angle 6$
Exterior	$\angle 1, \angle 2, \angle 7, \angle 8$ $\angle 3$ and $\angle 5, \angle 7, \angle 4$ and $\angle 8$
Corresponding	$\angle 3$ and $\angle 6, \angle 4$ and $\angle 5$
Alternate interior	$\angle 1$ and $\angle 8, \angle 2$ and $\angle 7$
Alternate exterior	$\angle 3$ and $\angle 5, \angle 4$ and $\angle 6$
Interior, on the same side of transversal	

(v) When a transversal cuts two parallel lines, we have the following interesting Relationships:

Each pair of corresponding angles are equal.
$\angle 1=\angle 5, \angle 3=\angle 7, \angle 2=\angle 6, \angle 4=\angle 8$
Each pair of alternate interior angles are equal.

$$
\angle 3=\angle 6, \angle 4=\angle 5
$$

Each pair of interior angles on the same side of transversal are supplementary.

$$
\angle 3+\angle 5=180^{\circ}, \angle 4+\angle 6=180^{\circ}
$$

The Triangle and its Properties

Chapter 6

6.1 Introduction

A triangle, you have seen, is a simple closed curve made of three line segments. It has three vertices, three sides and three angles. Here is $\triangle \mathrm{ABC}$ (Fig 6.1). It has

$$
\begin{array}{ll}
\text { Sides: } & \overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CA}} \\
\text { Angles: } & \angle \mathrm{BAC}, \angle \mathrm{ABC}, \angle \mathrm{BCA} \\
\text { Vertices: } & \mathrm{A}, \mathrm{~B}, \mathrm{C}
\end{array}
$$

The side opposite to the vertex A is BC . Can you name the angle opposite to the side AB ?

Fig 6.1

You know how to classify triangles based on the (i) sides
(ii) angles.
(i) Based on Sides: Scalene, Isosceles and Equilateral triangles.
(ii) Based on Angles: Acute-angled, Obtuse-angled and Right-angled triangles.

Make paper-cut models of the above triangular shapes. Compare your models with those of your friends and discuss about them.

TRY THESE

1. Write the six elements (i.e., the 3 sides and the 3 angles) of $\triangle \mathrm{ABC}$.
2. Write the:
(i) Side opposite to the vertex Q of $\triangle \mathrm{PQR}$
(ii) Angle opposite to the side LM of $\triangle \mathrm{LMN}$
(iii) Vertex opposite to the side RT of Δ RST
3. Look at Fig 6.2 and classify each of the triangles according to its
(a) Sides
(b) Angles

(i)

(iv)

6 cm
(ii)

(v)

7 cm
(iii)

(vi)

Fig 6.2
Now, let us try to explore something more about triangles.

6.2 MEDIANS OF A TRIANGLE

Given a line segment, you know how to find its perpendicular bisector by paper folding. Cut out a triangle ABC from a piece of paper (Fig 6.3). Consider any one of its sides, say, $\overline{\mathrm{BC}}$. By paper-folding, locate the perpendicular bisector of $\overline{\mathrm{BC}}$. The folded crease meets $\overline{\mathrm{BC}}$ at D , its mid point. Join $\overline{\mathrm{AD}}$.

Fig 6.3
The line segment AD , joining the mid-point of $\overline{\mathrm{BC}}$ to its opposite vertex A is called a median of the triangle.
Consider the sides $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CA}}$ and find two more medians of the triangle. A median connects a vertex of a triangle to the mid-point of the opposite side.

Think, Discuss and Write

1. How many medians can a triangle have?
2. Does a median lie wholly in the interior of the triangle? (If you think that this is not true, draw a figure to show such a case).

6.3 Altitude of a Triangle

Make a triangular shaped cardboard ABC. Place it upright on a table. How tall‘ is the triangle? The height is the distance from vertex A (in the Fig 6.4) the base $\overline{\mathrm{BC}}$.
From A to $\overline{\mathrm{BC}}$, you can think of many line segments (see the next Fig 6.5). Which among them will represent its height?
The height is given by the line segment that starts from A , comes straight down to $\overline{\mathrm{BC}}$, and is

Fig 6.4
 perpendicular to $\overline{\mathrm{BC}}$.
This line segment AL is an altitude of the triangle, An altitude has one end point at a vertex of the triangle and the other on the line containing the opposite side. Through each vertex, an altitude can be drawn.

THINK, DISCUSS AND WRITE

1. How many altitudes can a triangle have?
2. Draw rough sketches of altitudes from A to $\overline{\mathrm{BC}}$ for the following triangles (Fig 6.6):

Acute-angled
(i)

Right-angled
(ii)

Obtuse-angled
(iii)

Fig 6.6
3. Will an altitude always lie in the interior of a triangle? If you think that this need not be true, draw a rough sketch to show such a case.
4. Can you think of a triangle in which two altitudes of the triangle are two of its sides?
5. Can the altitude and median be same for a triangle?
(Hint: For Q.No. 4 and 5, investigate by drawing the altitudes for every type of triangle).

©o This

Take several cut-outs of
(i) an equilateral triangle(ii) an isosceles triangle and (iii) a scalene triangle.

Find their altitudes and medians. Do you find anything special about them? Discuss it
with your friends.

Exercise 6.1

1. In $\mathrm{A} P Q R, D$ is the mid-point of $\overline{\mathrm{QR}}$.
$\overline{\mathrm{PM}}$ is \qquad
PD is \qquad
2. Draw rough sketches for the following:
(a) In $\triangle \mathrm{ABC}, \mathrm{BE}$ is a median.
(b) In $\triangle P Q R, P Q$ and $P R$ are altitudes of the triangle.

(c) In $\triangle \mathrm{XYZ}, \mathrm{YL}$ is an altitude in the exterior of the triangle.
3. Verify by thawing a diagram if the median and altitude of an isosceles triangle can be same.

6.4 Exterior Angle of a Triangle and its Property

Fig 6.7

1. Draw a triangle ABC and produce one of its sides, say BC as shown in Fig 6.7. Observe the angle ACD formed at the point C. This angle lies in the exterior of $\triangle \mathrm{ABC}$. We call it an exterior angle of the $\triangle \mathrm{ABC}$ formed at vertex C,
Clearly $\angle \mathrm{BCA}$ is an adjacent angle to $\angle \mathrm{ACD}$. The remaining two angles of the triangle namely $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are called the two interior opposite angles or the two remote interior angles of $\angle \mathrm{ACD}$. Now cut
out (or make trace copies of) $\angle \mathrm{A}$ and $\angle \mathrm{B}$ and place them adjacent to each other as shown in Fig6.8.
Do these two pieces together entirely cover $\angle \mathrm{ACD}$?
Can you say that
$m \angle \mathrm{ACD}=m \angle \mathrm{~A}+m \angle \mathrm{~B}$?
2. As done earlier, draw a triangle ABC and form an exterior angle ACE). Now take a Protractor and measure \angle $\mathrm{ACD}, \angle \mathrm{A}$ and $\angle \mathrm{B}$

Find the sum $\angle \mathrm{A}+\angle \mathrm{B}$ and compare it with the measure of $\angle \mathrm{ACD}$. Do you observe that $\angle \mathrm{ACD}$ is equal (or nearly equal, if there is an error in measurement) to $\angle \mathrm{A}+\angle \mathrm{B}$?

Fig 6.8

You may repeat the two activities as mentioned by drawing some more triangles along with their exterior angles. Every time, you will find that the exterior angle of a triangle is equal to the sum of its two interior opposite angles.
A logical step-by-step argument can further confirm this fact.
An exterior angle of a triangle is equal to the sum of its interior opposite angles.

Given: Consider $\triangle \mathrm{ABC}$.
$\angle \mathrm{ACD}$ is an exterior angle.
To Show: $m \angle \mathrm{ACD}=m \angle \mathrm{~A}+m \angle \mathrm{~B}$
Through C draw \bar{C}, parallel to $\overline{B A}$.

Fig 6.9

Justification

Steps

(a) $\angle 1=\angle x$
(b) $\angle 2=\angle y$

Reasons

$\overline{\mathrm{BA}} \| \overline{\mathrm{CE}}$ and $\overline{\mathrm{AC}}$ is a transversal.
Therefore, alternate angles should be equal.
$\overline{\mathrm{BA}} \| \overline{\mathrm{CE}}$ and $\overline{\mathrm{BD}}$ is a transversal.
Therefore, corresponding angles should be equal.
(c) $\angle 1+\angle 2=\angle x+\angle y$
(d) Now, $\angle x+\angle y=m \angle$ ACD From Fig 6.9

Hence, $\angle 1+\angle 2=\angle \mathrm{ACD}$
The above relation between an exterior angle and its two interior opposite angles is referred to as the Exterior Angle Property of a triangle.

THINK, DIScuss And WRITE

1. Exterior angles can be formed for a triangle in many ways. Three of them are shown here F6.10)

Fig 6.10
There are three more ways of getting exterior angles. Try to produce those rough sketches.
2. Are the exterior angles formed at each vertex of a triangle equal?
3. What can you say about the sum of an exterior angle of a triangle and its adjacent interior angle?

EXAMPLE 1

Find angle x in Fig 6.11.
SOLUTION
Sum of interior opposite angles $=$ Exterior angle
or
$50^{\circ}+x=110^{\circ}$
or
$x=60^{\circ}$

THINK, DISCUSS AND WRITE

Fig 6.11

1. What can you say about each of the interior opposite angles, when the exterior angle is
(i) a right angle?
(ii) an obtuse angle?
(iii) an acute angle?
2. Can the exterior angle of a triangle be a straight angle?

Exercise 6.2

1. Find the value of the unknown exterior angle x in the following diagrams:

(i)

2. Find the value of the unknown interior angle x in the following figures:

6.5 Angle Sum Property of a Triangle

There is a remarkable property connecting the three angles of a triangle. You are going to see this through the following four activities.

1. Draw a triangle. Cut on the three angles. Rearrange them as shown in Fig 6.13 (i), (ii). The three angles now constitute one angle. This angle is a straight angle and so has measure 180°.

(i)

(ii)

Fig 6.13
Thus, the sum of the measures of the three angles of a triangle is 180°.
2. The same fact you can observe in a different way also. Take three copies of any triangle, say $\triangle \mathrm{ABC}$ (Fig 6.14).

Fig 6.14

Arrange them as in Fig 6.15.
What do you observe about $\angle 1+\angle 2+\angle 3$? (Do you also see the exterior angle property"?)

Fig 6.15
3. Take a piece of paper and cut out a triangle, say, $\triangle \mathrm{ABC}$ (Fig 6.16).

Make the altitude AM by folding $\triangle \mathrm{ABC}$ such that it passes through A .
Fold now the three corners such that all the three vertices A, B and C touch at M.

(i)

(ii)

(iii)

Fig 6.16
You find that all the three angles form together a straight angle. This again shows that the sum of the measures of the three angles of a triangle is 180°.
4. Draw any three triangles, say $\triangle \mathrm{ABC}, \triangle \mathrm{PQR}$ and $\triangle \mathrm{XYZ}$ in your notebook. Use your protractor and measure each of the angles of these triangles.
Tabulate your results

Name of Δ	Measures of Angles		Sum of the Measures of the three Angles
$\triangle \mathrm{ABC}$	$\mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{B}=$	$\mathrm{m} \angle \mathrm{C}=$	$\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}+\mathrm{m} \angle \mathrm{C}=$
$\Delta \mathrm{PQR}$	$\mathrm{m} \angle \mathrm{P}=\mathrm{m} \angle \mathrm{Q}=$	$\mathrm{m} \angle \mathrm{R}=$	$\mathrm{m} \angle \mathrm{P}+\mathrm{m} \angle \mathrm{Q}+\mathrm{m} \angle \mathrm{R}=$
$\Delta \mathrm{XYZ}$	$\mathrm{m} \angle \mathrm{X}=\mathrm{m} \angle \mathrm{Y}=$	$\mathrm{m} \angle \mathrm{Z}=$	$\mathrm{m} \angle \mathrm{X}+\mathrm{m} \angle \mathrm{Y}+\mathrm{m} \angle \mathrm{Z}=$

Allowing marginal errors in measurement, you will find that the last column always gives 180° (or nearly 180°).

When perfect precision is possible, this will also show that the sum of the measures of the three angles of a triangle is 180°.

You are now ready to give a formal justification of your assertion through logical argument.
Statement The total measure of the three angles of a triangle is 180°.
To justify this let us use the exterior angle property of a triangle.

Fig 6.17

Given $\angle 1, \angle 2, \angle 3$ are angles of AABC (Fig 6.17).
$\angle 4$ is the exterior angle when BC is extended to D .
Justification $\angle 1+\angle 2=\angle 4$ (by exterior angle property)
$\angle 1+\angle 2+\angle 3=\angle 4+\angle 3$ (adding $\angle 3$ to both the sides)
But $\angle 4$ and $\angle 3$ form a linear pair so it is 180°. Therefore, $\angle 1+\angle 2+\angle 3=180^{\circ}$
Let us see how we can use this property in a number of ways.
Example 2
In the given figure (Fig 6.18) find $\mathrm{m} \angle \mathrm{P}$.
Solution
By angle sum property of a triangle,

$$
\mathrm{m} \angle \mathrm{P}+47^{\circ}+52^{\circ}=180^{\circ}
$$

Therefore

$$
\begin{aligned}
\mathrm{m} \angle \mathrm{P} & =180^{\circ}-47^{\circ}-52^{\circ} \\
& =180^{\circ}-99^{\circ}=81^{\circ}
\end{aligned}
$$

Fig 6.18

Exercise 6.3

1. Find the value of the unknown x in the following diagrams:

2. Find the values of the unknowns x and y in the following diagrams:

THINK, DISCuSs And WRITE

1. Can you have a triangle with two right angles?
2. Can you have a triangle with two obtuse angles?
3. Can you have a triangle with two acute angles?

4: Can you have a triangle with all the three angles greater than 60° ?
5. Can you have a triangle with all the three angles equal to 60° ?
6. Can you have a triangle with all the three angles less than 60° ?
6.6 Two Special Triangles: Equilateral and Isosceles

A triangle in which all the three sides are of equal lengths is called an equilateral triangle.

Take two copies of an equilateral triangle ABC (Fig 6.19). Keep one of them fixed. Place the second triangle on it. It fits exactly into the first. Turn it round in any way and still they fit with one another exactly. Are you able to see that when the three sides of a triangle have equal lengths then the three angles are also of the same size? We conclude that in an equilateral triangle:
(i) all sides have same length.

(i)

(ii)
(ii) each angle has measure 60°.

A triangle in which two sides are of equal lengths is called an isosceles triangle.

Fig 6.20
From a piece of paper cut out an isosceles triangle XYZ, with XY = XZ (Fig 6.20). Fold it such that Z lies on Y . The line XM through X is now the axis of symmetry (which you will read in Chapter 14). You find that $\angle \mathrm{Y}$ and $\angle \mathrm{Z}$ fit on each other exactly. XY and XZ are called equal sides; YZ is called the base; $\angle \mathrm{Y}$ and $\angle \mathrm{Z}$ are called base angles and these are also equal.
Thus, in an isosceles triangle:
(i) two sides have same length.
(ii) base angles opposite to the equal sides are equal.

6.7 Sum of the Lengths of Two Sides of a Triangle

1. Mark three non-collinear spots A, B and C in your playground. Using lime powder mark the paths AB, BC and AC .

Fig 6.21

Ask your friend to start from A and reach C, walking along one or more of these paths. She can, for example, walk first along $\overline{\mathrm{AB}}$ and then along $\overline{\mathrm{BC}}$ to reach C ; or she can walk straight along $\overline{\mathrm{AC}}$. She will naturally prefer the direct path AC . If she takes the other path ($\overline{\mathrm{AB}}$ and then $\overline{\mathrm{BC}}$), she will have to walk more. In other words,

$$
\begin{equation*}
\mathrm{AB}+\mathrm{BC}>\mathrm{AC} \tag{i}
\end{equation*}
$$

Similarly, if one were to start from B and go to A, he or she will not take the route $\overline{\mathrm{BC}}$ and $\overline{\mathrm{CA}}$ but will prefer $\overline{\mathrm{BA}}$. This is because

$$
\begin{equation*}
\mathrm{BC}+\mathrm{CA}>\mathrm{AB} \tag{ii}
\end{equation*}
$$

By a similar argument, you find that

$$
\begin{equation*}
\mathrm{CA}+\mathrm{AB}>\mathrm{BC} \tag{iii}
\end{equation*}
$$

These observations suggest that the sum of the lengths of any two sides of a triangle is greater than the third side.
2. Collect fifteen small sticks (or strips) of different lengths, say, $6 \mathrm{~cm}, 7 \mathrm{~cm}, 8 \mathrm{~cm}$, $9 \mathrm{~cm} . . ., 20 \mathrm{~cm}$.
Take any three of these sticks and try to form a triangle. Repeat this by choosing different combinations of three sticks.
Suppose you first choose two sticks of length 6 cm and 12 cm . Your third stick has to be of length more than $12-6=6 \mathrm{~cm}$ and less than $12+6=18 \mathrm{~cm}$. Try this and find out why it is so.
To form a triangle you will need any three sticks such that the sum of the lengths of any two of them will always be greater than the length of the third stick.
This also suggests that the sum of the lengths of any two sides of a triangle is greater than the third side.
3. Draw any three triangles, say $\triangle \mathrm{ABC}, \triangle \mathrm{PQR}$ and $\Delta \mathrm{XYZ}$ in your notebook (Fig 6.22).

Fig 6.22

(i)

(ii)

(iii)

Fig 6.22
Use your ruler to find the lengths of their side and then tabulate your results as follows:

Name of Δ	Lengths of Sides	Is this True	

This also strengthens our earlier guess. Therefore, we conclude that sum of the lengths of any two sides of a triangle is greater than the length of the third side.
We also find that the difference between the length of any two sides of a triangle is smaller than the length of the third side.

EXAMPLE 3

Is there a triangle whose sides have lengths $10.2 \mathrm{~cm}, 5.8 \mathrm{~cm}$ and 4.5 cm ?
SOLUTION
Suppose such a triangle is possible. Then the sum of the lengths of any two sides would be greater than the length of the third side. Let us check this.

$$
\begin{array}{ll}
\text { Is } 4.5+5.8>10.2 ? & \text { Yes } \\
\text { Is } 5.8+10.2>4.5 ? & \text { Yes } \\
\text { Is } 10.2+4.5>5.8 ? & \text { Yes }
\end{array}
$$

Therefore, the triangle is possible.

EXAMPLE 4

The lengths of two sides of a triangle are 6 cm and 8 cm . Between which two numbers can length of the third side fall?
SOLUTION
We know that the sum of two sides of a triangle is always greater than the third.
Therefore, third side has to be less than the sum of the two sides. The third side is thus, less than $8+6=14 \mathrm{~cm}$.
The side cannot be less than the difference of the two sides. Thus, the third side has to be more than $8-6=2 \mathrm{~cm}$.
The length of the third side could be any length greater than 2 and less than 14 cm .

Exercise 6.4

1. Is it possible to have a triangle with the following sides?
(i) $2 \mathrm{~cm}, 3 \mathrm{~cm}, 5 \mathrm{~cm}$
(ii) $3 \mathrm{~cm}, 6 \mathrm{~cm}, 7 \mathrm{~cm}$
(iii) $6 \mathrm{~cm}, 3 \mathrm{~cm}, 2 \mathrm{~cm}$
2. Take any point O in the interior of a triangle $P Q R$. Is
(i) $\mathrm{OP}+\mathrm{OQ}>\mathrm{PQ}$?
(ii) $\mathrm{OQ}+\mathrm{OR}>\mathrm{QR}$?

(iii) $\mathrm{OR}+\mathrm{OP}>\mathrm{RP}$?
3. AM is a median of a triangle ABC .

Is $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>2 \mathrm{AM}$?
(Consider the sides of triangles
$\Delta \mathrm{ABM}$ and $\triangle \mathrm{AMC}$.) \qquad

4. ABCD is a quadrilateral.

Is $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{AC}+\mathrm{BD}$? \qquad

5. ABCD is quadrilateral. Is
$\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2(\mathrm{AC}+\mathrm{BD})$?
6. The lengths of two sides of a triangle are 12 cm and 15 cm . Between what two measures should the length of the third side fall?

> Think, DISCuSs And Write

1. Is the sum of any two angles of a triangle always greater than the third angle?

6.8 Right-Angled Triangles and Pythagoras Property

Pythagoras, a Greek philosopher of sixth century B.C. is said to have found a very important and useful property of rightangled triangles given in this section. The property is, hence, named after him. In fact, this property was known to people of

Fig 6.23 many other countries too. The Indian mathematician Baudhayan has also given an equivalent form of this property. We now try to explain the Pythagoras property.
In a right-angled triangle, the sides have some special names. The side opposite to the right angle is called the hypotenuse; the other two sides are known as the legs of the right-angled triangle.
In $\triangle \mathrm{ABC}$ (Fig 6.23), the right-angle is at B . So,
AC is the hypotenuse. $\overline{\mathrm{AB}}$ and $\overline{\mathrm{BC}}$ are the legs of $\triangle \mathrm{ABC}$.
Make eight identical copies of right angled triangle of any size you prefer. For example, you make a right-angled triangle whose hypotenuse is a units long and the legs are of lengths b units and c units (Fig 6.24).
Draw two identical squares on a sheet with sides of lengths $b+c$.
You are to place four triangles in one square and the remaining four triangles in the other square, as shown in the following diagram (Fig 6.25).

Fig 6.25

The squares are identical; the eight triangles inserted are also identical.
Hence the uncovered area of square $A=$ Uncovered area of square B.
i.e., Area of inner square of square $\mathrm{A}=$ The total area of two uncovered squares in square B .

$$
a^{2}=b^{2}+c^{2}
$$

This is Pythagoras property. It maybe stated as follows:

In a right-angled triangle, the square on the hypotenuse $=$ sum of the squares on the legs

Pythagoras property is a very useful tool in mathematics. It is formally proved as a theorem
 in later classes. You should be clear about its meaning.

It says that for any right-angled triangle, the area of the square on the hypotenuse is equal to the sum of the areas of the squares on the legs.

Draw a right triangle, preferably on a square sheet, construct squares on its sides, compute the area of these squares and verify the theorem practically (Fig 6.26).

If you have a right-angled triangle, the Pythagoras property holds. If the Pythagoras property holds for some triangle, will the triangle be rightangled? (Such problems are known as converse problems). We will try to answer this. Now, we will show that, if there is a triangle such that sum of the squares on two of its sides is equal to the square of the third side, it must be a right-angled triangle.

Fig 6.26
2. Repeat the above activity with squares whose sides have lengths $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 7 cm . You get an obtuse-angled triangle! Note that

$$
4^{2}+5^{2} \neq 7^{2} \text { etc. }
$$

This shows that Pythagoras property holds if and only if the triangle is right-angled. Hence we get this fact:

If the Pythagoras property holds, the triangle must be right-angled

Example 5

Determine whether the triangle whose lengths of sides are $3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$ is a right-angled triangle.

Solution

$3^{2}=3 \times 3=9 ; 4^{2}=4 \times 4=16 ; 5^{2}=5 \times 5=25$
We find $3^{2}+4^{2}=52$
Therefore, the triangle is right-angled.
Note: In any right-angled triangle, the hypotenuse happens to be the longest side. In this example, the side with length 5 cm is the hypotenuse.

Example 6

$\triangle \mathrm{ABC}$ is right-angled at C . If A
$\mathrm{AC}=5 \mathrm{~cm}$ and $\mathrm{BC}=12 \mathrm{~cm}$ find the length of AB .

Solution

A rough figure will help us (Fig 6.28).

Fig 6.28

By Pythagoras property,

$$
\begin{aligned}
\mathrm{AB}^{2} & =\mathrm{AC}^{2}+\mathrm{BC}^{2} \\
& =5^{2}+12^{2}=25+144=169=13^{2} \\
\mathrm{AB}^{2} & =13^{2} \cdot \mathrm{So}, \mathrm{AB}=13
\end{aligned}
$$

or
or the length of $A B$ is 13 cm .
Note: To identify perfect squares, you may use prime factorisation technique.

Exercise 6.5

1. ABC is a triangle, right angled at B . If $\mathrm{AB}=4 \mathrm{~cm}$ and $\mathrm{BC}=5 \mathrm{~cm}$. Find AC
2. In right angled triangle $P Q R$, right angled at Q. If $P Q$ $=3 \mathrm{~cm}$ and $\mathrm{PR}=5 \mathrm{~cm}$. What is RQ
3. A 15 m long ladder reached a window 12 m high from the ground on placing it against a wall at a distance a. Find the distance of the foot of the ladder from the wall.
4. Which of the following can be the sides of a right triangle?

(i) $2.5 \mathrm{~cm}, 6.5 \mathrm{~cm}, 6 \mathrm{~cm}$.
(ii) $2 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$.
(iii) $1.5 \mathrm{~cm}, 2 \mathrm{~cm}, 2.5 \mathrm{~cm}$.

In the case of right-angled triangles, identify the right angles.
5. A tree is broken at a height of 12 m from the ground and its top touches the ground at a distance of 5 m from the base of the tree. Find the original height of the tree.
6. Angles Q and R of a $\triangle \mathrm{PQR}$ are 25° and 65°.

Write which of the following is true:
(i) $\mathrm{PQ}^{2}+\mathrm{QR}^{2}=\mathrm{RP}^{2}$
(ii) $\mathrm{PQ}^{2}+\mathrm{RP}^{2}=\mathrm{QR}^{2}$
(iii) $\mathrm{RP}^{2}+\mathrm{QR}^{2}=\mathrm{PQ}^{2}$

7. Find the perimeter of the rectangle whose length is 40 cm and a diagonal is 41 cm .
8. The diagonals of a rhombus measure 16 cm and 30 cm . Find its perimeter.

THINK, DISCUSS AND WRITE

1. Which is the longest side in the triangle $P Q R$, right-angled at P ?
2. Which is the longest side in the triangle ABC , right-angled at B ?
3. Which is the longest side of a right triangle?
4. _The diagonal of a rectangle produce by itself the same area as produced by its length and breadth'- This is Baudhayan Theorem. Compare it with the Pythagoras property.

Do This

Enrichment Activity
There are many proofs for Pythagoras theorem, using _dissection‘ and rearrangement' procedure. Try to collect a few of them and draw charts explaining them.

What Have We Discussed

1. The six elements of a triangle are its three angles and the three sides.
2. The line segment joining a vertex of a triangle to the mid point of its opposite side is called a median of the triangle. A triangle has 3 medians.
3. The perpendicular line segment from a vertex of a triangle to its opposite side is called an altitude of the triangle. A triangle has 3 altitudes.
4. An exterior angle of a triangle is formed, when a side of a triangle is produced. At each vertex, you have two ways of forming an exterior angle.
5. A property of exterior angles:

The measure of any exterior angle of a triangle is equal to the sum of the measures of its interior opposite angles.
6. The angle sum property of a triangle:

The total measure of the three angles of a triangle is 180°.
7. A triangle is said to be equilateral, if each one of its sides has the same length. In an equilateral triangle, each angle has measure 60°.
8. A triangle is said to be isosceles, if atleast any two of its sides are of same length. The nonequal side of an isosceles triangle is called its base; the base angles of an isosceles triangle have equal measure.
9. Property of the lengths of sides of a triangle:

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

The difference between the lengths of any two sides is smaller than the length of the third side.

This property is useful to know if it is possible to draw a triangle when the lengths of the three sides are known.
10. In a right angled triangle, the side opposite to the right angle is called the hypotenuse and the other two sides are called its legs.
11. Pythagoras property:

In a right-angled triangle, the square on the hypotenuse $=$ the sum of the squares on its legs. If a triangle is not right-angled, this property does not hold good. This property is useful to decide whether a given triangle is right-angled or not.

Congruence of Triangles

Chapter 7

7.1 INTRODUCTION

You are now ready to learn a very important geometrical idea, Congruence. In particular, you will study a lot about congruence of triangles.
To understand what congruence is, we turn to some activities.

Do This

Take two stamps (Fig 7.1) of same denomination. Place one stamp over the other. What do you observe?

Fig 7.1

One stamp covers the other completely and exactly. This means that the two stamps are of the same shape and same size. Such objects are said to be congruent. The two stamps used by you are congruent to one another. Congruent objects are exact copies of one another.
Can you, now, say if the following objects are congruent or not?

1. Shaving blades of the same company [Fig 7.2 (i)].
2. Sheets of the same leer-pad [fig 7.2 (ii)]. 3. Biscuits in the same packet [Fig 7.2 (iii)]
3. Toys made of the same mould. [Fig 7.2(iv)]

Fig 7.2

The relation of two objects being congruent is called congruence. For the present, we will deal with plane figures only, although congruence is a general idea applicable to threedimensional shapes also. We will try to learn a precise meaning of the congruence of plane figures already known.

7.2 Congruence of Plane Figures

Look at the two figures given here (Fig 73). Are they congruent?

Fig 7.3
You can use the method of superposition. Take a trace-copy of one of them and place it over the other. If the figures cover each other completely, they are congruent. Alternatively, you may cut out one of them and place it over the other. Beware! You are not allowed to bend, twist or stretch the figure that is cut out (or traced out).
In Fig 7.3, if figure F_{1} is congruent to figure F_{2}, we write $F_{1} \cong F_{2}$.

7.3 Congruence Among Line Segments

When are two line segments congruent? Observe the two pairs of line segments given here (Fig 7.4).

Fig 7.4
Use the _trace-copy، superposition method for the pair of line segments in [Fig 7.4(i)]. Copy $\overline{\mathrm{CD}}$ and place it on $\overline{\mathrm{AB}}$. You find that $\overline{\mathrm{CD}}$ covers $\overline{\mathrm{AB}}$, with C on A and D on B . Hence, the line segments are congruent. We write $\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$.

Repeat this activity for the pair of line segments in [Fig 7.4(ii)]. What do you find? They are not congruent. How do you know it? It is because the line segments do not coincide when placed one over other.

You should have by now noticed that the pair of line segments in [Fig 7.4(i)] matched with each other because they had same length; and this was not the case in [Fig 7.4(ii)].

If two line segments have the same (i.e., equal,) length, they are congruent. Also if two line segments are congruent, they have the same length.

In view of the above fact, when two line segments are congruent, we sometimes just say that the line segments are equal; and we also write $\mathrm{AB}=\mathrm{CD}$. (What we actually mean
is $\overline{\mathrm{AB}} @ \overline{\mathrm{CD}}$).

7.4 CONGRUENCE OF ANGLES

Look at the four angles given here (Fig 7.5).

(i)

(ii)

(iii)

(iv)

Fig 7.5
Make a trace-copy of $£ \quad$ PQR. Try to superpose it on $\mp \mathrm{ABC}$. For this, first place Q on B and $\overrightarrow{Q P}$ along $\overrightarrow{B A}$. Where does $\overrightarrow{Q R}$ fall? It falls on $\overrightarrow{B C}$.
Thus, $Đ P Q R$ matches exactly with $\mp A B C$. That is, $Đ A B C$ and $\mp P Q R$ are congruent.
(Note that the measurement of these two congruent angles are same).
We write $\pm A B C @$ ĐPQR
or $m Ð \mathrm{ABC}=m Ð \mathrm{PQR}$ (In this case, measure is 40°).
Now, you take a trace-copy of $£ L M N$. Try to superpose it on $Đ A B C$. Place M on B and
$\overrightarrow{M L}$ along $\overrightarrow{B A}$. Does $\overrightarrow{M N}$ fall on $\overrightarrow{B C}$? No, in this case it does not happen. You find that \mp $A B C$ and $£ L M N$ do not cover each other exactly. So, they are not congruent. (Note that, in this case, the measures of $Đ A B C$ and $Đ L M N$ are not equal).
What about angles $£ X Y Z$ and $Đ A B C$? The rays $Y X$ and $Y Z$, respectively appear [in Fig 7.5 (iv)] to be longer than $\overrightarrow{\mathrm{BA}}$ and $\overrightarrow{\mathrm{BC}}$. You may, hence, think that $\mp \mathrm{ABC}$ is _smaller${ }^{‘}$ than \mp XYZ. But remember that the rays in the figure only indicate the direction and not any length.
On superposition, you will find that these two angles are also congruent.
We write

$$
\begin{gather*}
\text { £ABC@ @XYZ } \tag{ii}\\
m Ð \mathrm{ABC}=m Ð \mathrm{XYZ}
\end{gather*}
$$

or $\quad m Ð \mathrm{ABC}=m Ð \mathrm{XYZ}$
In view of (i) and (ii), we may even write
ĐABC@ $@$ PQR @ $\supseteq \mathrm{XYZ}$

If two angles have the same measure, they are congruent. Also, f two angles are congruent, their measures are same.

As in the case of line segments, congruency of angles entirely depends on the equality of their measures. So, to say that two angles are congruent, we sometimes just say that the angles are equal; and we write

$$
\angle \mathrm{ABC}=\angle \mathrm{PQR} \text { (to mean } \angle \mathrm{ABC} \cong \angle \mathrm{PQR} \text {). }
$$

7.5 Congruence of Triangles

We saw that two line segments are congruent where one of them, is just a copy of the other. Similarly, two angles are congruent if one of them is a copy of the other. We extend this idea to triangles.

Two triangles are congruent if they are copies of each other and when superposed, they cover each other exactly.

(i)

(ii)

Fig 7.6
$\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ have the same size and shape. They are congruent. So, we would express this as

$$
\Delta \mathrm{ABC} \cong \Delta \mathrm{PQR}
$$

This means that, when you place $\triangle P Q R$ on $\triangle A B C, P$ falls on A, Q falls on B and R falls on C , also $\overline{\mathrm{PQ}}$ falls along $\overline{\mathrm{AB}}, \overline{\mathrm{QR}}$ falls along $\overline{\mathrm{BC}}$ and $\overline{\mathrm{PR}}$ falls along $\overline{\mathrm{AC}}$. If, under a given correspondence, two triangles are congruent, then their corresponding parts (i.e., angles and sides) that match one another are equal. Thus, in these two congruent triangles, we have:
Corresponding vertices: $\quad \mathrm{A}$ and P, B and Q, C and R .
Corresponding sides: $\quad \overline{\mathrm{AB}}$ and $\overline{\mathrm{PQ}}, \overline{\mathrm{BC}}$ and $\overline{\mathrm{QR}}, \overline{\mathrm{AC}}$ and $\overline{\mathrm{PR}}$.
Corresponding angles: $\quad \angle \mathrm{A}$ and $\angle \mathrm{P}, \angle \mathrm{B}$ and $\angle \mathrm{Q}, \angle \mathrm{C}$ and $\angle \mathrm{R}$.
If you place $\triangle \mathrm{PQR}$ on $\triangle \mathrm{ABC}$ such that P falls on B , then, should the other vertices also correspond suitably? It need not happen! Take trace, copies of the triangles and try to find out.
This shows that while talking about congruence of triangles, not only the measures of angles and lengths of sides matter, but also the matching of vertices. In the above case, the correspondence is -

$$
\mathrm{A} \leftrightarrow \mathrm{P}, \mathrm{~B} \leftrightarrow \mathrm{Q}, \quad \mathrm{C} \leftrightarrow \mathrm{R}
$$

We may write this as

$$
\mathrm{ABC} \leftrightarrow \mathrm{PQR}
$$

Example 1

$\Delta \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are congruent under the correspondence:
$\mathrm{ABC} \leftrightarrow \mathrm{RQP}$
Write the parts of $\triangle \mathrm{ABC}$ that correspond to
(i) $\overline{\mathrm{PQ}}$
(ii) $\angle \mathrm{Q}$
(iii) $\overline{\mathrm{RP}}$

Solution

For better understanding of the correspondence let us use a diagram (Fig 7.7).

Fig 7.7
The correspondence is $\mathrm{ABC} \leftrightarrow \mathrm{RQP}$. This means
$\mathrm{A} \leftrightarrow \mathrm{R} ; \quad \mathrm{B} \leftrightarrow \mathrm{Q} ;$ and $\mathrm{C} \leftrightarrow \mathrm{P}$.
So, (i) $\overline{\mathrm{PQ}} \leftrightarrow \overline{\mathrm{CB}}$
(ii) $\angle \mathrm{Q} \leftrightarrow \angle \mathrm{B} \quad$ and (iii) $\overline{\mathrm{RP}} \leftrightarrow \overline{\mathrm{AC}}$

THINK, DISCUSS AND WRITE

When two triangles, say ABC and PQR are given, there are, in all, six possible matchings or correspondences. Two of them are
(i) $\mathrm{ABC} \leftrightarrow \mathrm{PQR} \quad$ and
(ii) $\mathrm{ABC} \leftrightarrow \mathrm{QRP}$.

Find the other four correspondences by using two cutouts of triangles. Will all these correspondences lead to congruence? Think about it.

Exercise 7.1

1. Complete the following statements:
(a) Two line segments are congruent if \qquad
(b) Among two congruent angles, one has a measure of 70°; the measure of the other angle is
(c) When we write $\angle \mathrm{A}=\angle \mathrm{B}$, we actually mean \qquad
2. Give any two real-life examples for congruent shapes.
3. If $\Delta \mathrm{ABC} \cong \triangle \mathrm{FED}$ under the correspondence $\mathrm{ABC} \leftrightarrow \mathrm{FED}$, write all the corresponding congruent parts of the triangles.
4. If $\triangle \mathrm{DEF} \cong \triangle \mathrm{BCA}$, write the part(s) of $\triangle \mathrm{BCA}$ that correspond to
(i) $\angle \mathrm{E}$
(ii) $\overline{\mathrm{EF}}$
(iii) $\angle \mathrm{F}$
(iv) $\overline{\mathrm{DF}}$

7.6 Criteria for Congruence of Triangles

We make use of triangular structures and patterns frequently in day-to-day life. So, it is rewarding to find out when two triangular shapes will be congruent. If you have two triangles drawn in your notebook and want to verify if they are congruent, you cannot everytime cut out one of them and use method of superposition. Instead, if we can judge congruency in terms of appropriate measures, it would be quite useful. Let us try to do this.

A Game

Fig 7.8
Triangle drawn by
Munna

Munna and Babloo play a game. Munna has drawn a triangle $\Delta \mathrm{ABC}$ (Fig 7.8) and has noted the length of each of its sides and measure of each of its angles. Babloo has not seen it. Munna challenges Babloo if he can draw a copy of his Δ ABC based on bits of information that Munna would give. Babloo attempts to draw a triangle congruent to $\triangle \mathrm{ABC}$, using the information provided by Munna. The game starts. Carefully observe their conversation and their games.

SSS Game

Munna: One side of $\triangle \mathrm{ABC}$ is 5.5 cm .
Babloo: With this information, I can draw any number of triangles (Fig 7.9) but they need not be copies of $\triangle \mathrm{ABC}$. The triangle I draw may be obtuse-angled or right-angled or acuteangled. For example, here are a few.

Fig 7.9
I have used some arbitrary lengths for other sides. This gives me many triangles with length of base 5.5 cm .
So, giving only one side-length will not help me to produce a copy of $\triangle \mathrm{ABC}$.

Munna: Okay. I will give you the length of one more side. Take two sides of $\Delta \mathrm{ABC}$ to be of lengths 5.5 cm and 3.4 cm .

Babloo: Even this will not be sufficient for the purpose. I can draw several triangles (Fig 7.10) with the given information which may not be copies of $\triangle \mathrm{ABC}$. Here are a few to support my argument:

Fig 7.10
One cannot draw an exact copy of your triangle, if only the lengths of two sides are given.
Munna: Alright. Let me give the lengths of all the three sides. In $\triangle \mathrm{ABC}$, I have $\mathrm{AB}=5 \mathrm{~cm}$, $\mathrm{BC}=5.5 \mathrm{~cm}$ and $\mathrm{AC}=3.4 \mathrm{~cm}$.

Babloo: I think it should be possible. Let me try now. First I draw a rough figure so that I can remember the lengths easily.

I draw $\overline{\mathrm{BC}}$ with length 5.5 cm .
With B as centre, I draw an arc of radius 5 cm . The point A has to be somewhere on this arc. With C as centre, I draw an arc of radius 3.4 cm . The point A has to be on

Fig 7.11 this arc also.

So, A lies on both the arcs drawn. This means A is the point of intersection of the arcs. I know now the positions of points A, B and C . Aha! I can join them and get $\triangle \mathrm{ABC}$ (Fig 7.11).

Munna: Excellent. So, to draw a copy of a given $\triangle \mathrm{ABC}$ (i.e., to draw a triangle congruent to $\triangle \mathrm{ABC}$), we need the lengths of three sides. Shall we call this condition as side-side-side criterion?

Babloo: Why not we call it SSS criterion, to be short?

SSS Congruence criterion:

If under a given correspondence, the three sides of one triangle are equal to the three corresponding sides of another triangle, then the triangles are congruent.

Example 2

In triangles ABC and $\mathrm{PQR}, \mathrm{AB}=3.5 \mathrm{~cm}, \mathrm{BC}=7.1 \mathrm{~cm}$, $\mathrm{AC}=5 \mathrm{~cm}, \mathrm{PQ}=7.1 \mathrm{~cm}, \mathrm{QR}=5 \mathrm{~cm}$ and $\mathrm{PR}=3.5 \mathrm{~cm}$.
Examine whether the two triangles are congruent or not. If yes, write the congruence relation in symbolic form.

Solution

Here,

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{PR}(=3.5 \mathrm{~cm}), \\
& \mathrm{BC}=\mathrm{PQ}(=7.1 \mathrm{~cm}) \\
& \mathrm{AC}=\mathrm{QR}(=5 \mathrm{~cm})
\end{aligned}
$$

and
This shows that the three sides of one triangle are equal to the three sides of the other triangle. So, by SSS congruence rule, the two triangles are congruent. From the above three equality relations, it can be easily seen that $\mathrm{A} \leftrightarrow \mathrm{R}, \mathrm{B} \leftrightarrow \mathrm{P}$ and $\mathrm{C} \leftrightarrow \mathrm{Q}$.

Fig 7.12

So, we have $\quad \mathrm{ABC} \cong \mathrm{RPQ}$
Important note: The order of the letters in the names of congruent triangles displays the corresponding relationships. Thus, when you write $\triangle A B C \cong \triangle R P Q$, you would know that A lies on R, B on P, C on $\mathrm{Q}, \overline{\mathrm{AB}}$ along $\overline{\mathrm{RP}}, \overline{\mathrm{BC}}$ along $\overline{\mathrm{PQ}}$ and $\overline{\mathrm{AC}}$ along $\overline{\mathrm{RQ}}$

Example 3

In Fig 7.13, $\mathrm{AD}=\mathrm{CD}$ and $\mathrm{AB}=\mathrm{CB}$.
(i) State the three pairs of equal parts in $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CBD}$.

(ii) Is $\triangle \mathrm{ABD} \cong \triangle \mathrm{CBD}$? Why or why not?
(iii) Does BD bisect $\angle \mathrm{ABC}$? Give reasons.

Solution

(i) In $\Delta \mathrm{ABD}$ and $\Delta \mathrm{CBD}$, the three pairs of equal parts are as given below:

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{CB} \text { (Given) } \\
& \mathrm{AD}=\mathrm{CD} \text { (Given) } \\
& \mathrm{BD}=\mathrm{BD} \text { (Common in both) }
\end{aligned}
$$

(ii) From (i) above, $\triangle \mathrm{ABD} \cong \Delta \mathrm{CBD}$ (By SSS congruence rule)

Fig 7.13 (iii) $\angle \mathrm{ABD}=\angle \mathrm{CBD}$ (Corresponding parts of congruent triangles) So, BD bisects $\angle \mathrm{ABC}$

TRY THESE

1. In Fig 7.14, lengths of the sides of the triangles are indicated. By applying SSS congruence rule, state which pairs of triangle are congruent. In case of congruent triangle, write the result in symbolic form:

Fig 7.14

Think, Discuss And Write

ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$ (Fig 7.17).
Take a trace-copy of $\Delta \mathrm{ABC}$ and also name it as Δ ABC .
(i) State the three pairs of equal parts in $\triangle \mathrm{ABC}$ and AACB.

Fig 7.15
(ii) Is $\triangle \mathrm{ABC} \cong \triangle \mathrm{ACB}$? Why or Why not?
(iii) Is $\angle \mathrm{B}=\angle \mathrm{C}$? Why or why not?

Munna and Babloo now turn to playing the game with a slight modification.

SAS Game

Munna: Let me now change the rules of the triangle-copying game.
Babloo: Right, go ahead.
Munna: You have already found that giving the length of only one side is useless.
Babloo: Of course, yes.
Munna: In that case, let me tell that in $\triangle \mathrm{ABC}$, one side is 5.5 cm and one angle is 65°.
Babloo: This again is not sufficient for the job. I can find many triangles satisfying your information, but are not copies of $\triangle \mathrm{ABC}$. For example, I have given here some of them (Fig 7.16):

Fig 7.16

Munna: So, what shall we do?
Babloo: More information is needed.
Munna: Then, let me modify my earlier statement. In $\triangle \mathrm{ABC}$, the length of two sides are 5.5 cm and 3.4 cm , and the angle between these two sides is 65°.

Babloo: This information should help me. Let me try. I draw first $\overline{\mathrm{BC}}$ of length 5.5. cm [Fig 7.17 (i)]. Now I make 65° at C Fig 7.17 (ii)].

Fig 7.17
Yes, I got it, A must be 3.4 cm away from C along this angular line through C .
I draw an arc of 3.4 cm with C as centre. It cuts the 65° line at A .
Now, I join AB and get $\triangle \mathrm{ABC}$ [Fig 7. 17(iii)].
Munna: You have used side-angle-side, where the angle is _induded ' between the sides!
Babloo: Yes. How shall we name this criterion?
Munna: It is SAS criterion. Do you follow it?
Babloo: Yes, of course.

SAS Congruence Criterion.

If under a correspondence, two sides and the angle included between them of a triangle are equal to two corresponding sides and the angle included between them of another triangle, then the triangles are congruent.

Example 4

Given below are measurements of some parts of two triangles. Examine whether the two triangles are congruent or not, by using SAS congruence rule. If the triangles are congruent, write them in symbolic form.
$\Delta \mathrm{ABC}$
(a) $\mathrm{AB}=7 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}, \angle \mathrm{~B}=50^{\circ}$
(b) $\mathrm{AB}=4.5 \mathrm{~cm}, \mathrm{AC}=4 \mathrm{~cm}, \angle \mathrm{~A}=60^{\circ}$
(c) $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{AC}=4 \mathrm{~cm}, \angle \mathrm{~B}=35^{\circ}$

\triangle DEF

$$
\mathrm{DE}=5 \mathrm{~cm}, \mathrm{EF}=7 \mathrm{~cm}, \angle \mathrm{E}=50^{\circ}
$$

$$
\mathrm{DE}=4 \mathrm{~cm}, \mathrm{FD}=4.5 \mathrm{~cm}, \angle \mathrm{D}=55^{\circ}
$$

$$
\mathrm{DF}=4 \mathrm{~cm}, \mathrm{EF}=6 \mathrm{~cm}, \angle \mathrm{E}=35^{\circ}
$$

(It will be always helpful to draw a rough figure, mark the measurements and then probe the question).

Solution

(a) Here, $\mathrm{AB}=\mathrm{EF}(=7 \mathrm{~cm}), \mathrm{BC}=\mathrm{DE}(=5 \mathrm{~cm})$ and included $\angle \mathrm{B}$ included $\angle \mathrm{E}\left(=50^{\circ}\right)$. Also, $\mathrm{A} \leftrightarrow \mathrm{FB} \leftrightarrow \mathrm{E}$ and $\mathrm{C} \leftrightarrow \mathrm{D}$. Therefore, $\Delta \mathrm{ABC} \cong \triangle \mathrm{FED}$ (By SAS congruence rule)
(Fig 7.18)

(b) Here, $\mathrm{AB}=\mathrm{FD}$ and $\mathrm{AC}=\mathrm{DE}$ (Fig 7.19).

But included $\angle \mathrm{A} \neq$ included $\angle \mathrm{D}$. So, we cannot say that the triangles are congruent.
(c) Here, $\mathrm{BC}=\mathrm{EF}, \mathrm{AC}=\mathrm{DF}$ and $\angle \mathrm{B}=\angle \mathrm{E}$. But $\angle \mathrm{B}$ is not the included angle between the sides AC and BC . Similarly, $\angle \mathrm{E}$ is not the included angle between the sides EF and DF. So, SAS congruence rule cannot be applied and we cannot conclude that the two triangles are congruent.

Example 5

In Fig 7.20, $\mathrm{AB}=\mathrm{AC}$ and AD is the bisector of $\angle \mathrm{BAC}$.
(i) State three pairs of equal parts in triangles ADB and ADC.
(ii) Is $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$? Give reasons.
(iii) Is $\angle \mathrm{B}=\angle \mathrm{C}$? Give reasons.

Solution

Fig 7.20
(i) The three pairs of equal parts are as follows:
$\mathrm{AB}=\mathrm{AC}$ (Given)
$\angle \mathrm{BAD}=\angle \mathrm{CAD}(\mathrm{AD}$ bisects $\angle \mathrm{BAC})$ and $\mathrm{AD}=\mathrm{AD}$ (common)
(ii) Yes, $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$ (By SAS congruence rule)
(iii) $\angle \mathrm{B}=\angle \mathrm{C}$ (Corresponding parts of congruent triangles)

ASA Game

Can you draw Munna's triangle, if you know
(i) only one of its angles?
(ii) only two of its angles?
(iii) two angles and any one side?
(iv) two angles and the side included between them?

Attempt to solve the above question lead us to the following criterion:

ASA Congruence Criterion:

If under a correspondence, two angles and the included side of a triangle are equal to two corresponding angles and the included side of another triangle, then the triangles are congruent.

Example 6

By applying the ASA congruence rule, it is to be established that $\triangle \mathrm{ABC} \cong \triangle \mathrm{QRP}$ and it is given that $\mathrm{BC}=\mathrm{RP}$. What additional information is needed to establish the congruence?

Solution

For ASA congruence rule, we need the two angles between which the two sides BC and RP are included. So, the additional information is as follows:

$$
\begin{aligned}
& \angle \mathrm{B}=\angle \mathrm{R} \\
& \angle \mathrm{C}=\angle \mathrm{P}
\end{aligned}
$$

Example 7

In Fig 7.21, can you use ASA congruence rule and conclude that $\triangle \mathrm{AOC} \cong \triangle \mathrm{BOD}$?

Solution

In the two triangles AOC and $\mathrm{BOD}, \angle \mathrm{C}=\angle \mathrm{D}$
(each 70°)
Also, $\angle \mathrm{AOC}=\angle \mathrm{BOD}=30^{\circ}$ (vertically opposite angles)

$$
\angle \mathrm{A} \text { of } \triangle \mathrm{AOC}=180^{\circ}-\left(70^{\circ}+30^{\circ}\right)=80^{\circ}
$$

(using angle sum property of a triangle)

Fig 7.21

Similarly, $\angle \mathrm{B}$ of $\triangle \mathrm{BOD}=180^{\circ}-\left(70^{\circ}+30^{\circ}\right)=80^{\circ}$
Thus, we have $\angle \mathrm{A}=\angle \mathrm{B}, \mathrm{AC}=\mathrm{BD}$ and $\angle \mathrm{C}=\angle \mathrm{D}$
Now, side AC is between $\angle \mathrm{A}$ and $\angle \mathrm{C}$ and side BD is between $\angle \mathrm{B}$ and $\angle \mathrm{D}$.
So, by ASA congruence rule, $\triangle \mathrm{AOC} \cong \triangle \mathrm{BOD}$.

Remark

Given two angles of a triangle, you can always find the third angle of the triangle. So, whenever, two angles and one side of one triangle are equal to the corresponding two angles and one side of another triangle, you may convert it into _two angles and the included side‘ form of congruence and then apply the ASA congruence rule.

7.7 Congruence among Right-Angled Triangles

Congruence in the case of two right triangles deserves special attention. In

Fig 7.22 such triangles, obviously, the right angles are equal. So, the congruence criterion becomes easy.
Can you draw $\triangle \mathrm{ABC}$ (shown in Fig 7.22) with $\angle \mathrm{B}=90^{\circ}$, if
(i) only BC is known?
(ii) only $\angle \mathrm{C}$ is known?
(iii) $\angle \mathrm{A}$ and $\angle \mathrm{C}$ are known?
(iv) AB and BC are known?
(v) AC and one of AB or BC are known?

Try these with rough sketches. You will find that (iv) and (v) help you to draw the triangle. But case (iv) is simply the SAS condition. Case (v) is something new. This leads to the following criterion:

RHS Congruence criterion:

If under a correspondence, the hypotenuse and one side of a right-angled triangle are respectively equal to the hypotenuse and one side of another right-angled triangle, then the triangles are congruent.

Why do we call this _RHS congruence? Think about it.

Example 8

Given below are measurements of some parts of two triangles. Examine whether the two triangles are congruent or not, using RHS congruence rule. In case of congruent triangles, write the result in symbolic form:

$\triangle \mathrm{ABC}$

(i) $\angle \mathrm{B}=90^{\circ}, \mathrm{AC}=8 \mathrm{~cm}, \mathrm{AB}=3 \mathrm{~cm}$
(ii) $\angle \mathrm{A}=90^{\circ}, \mathrm{AC}=5 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}$

$\triangle \mathrm{PQR}$

$\angle \mathrm{P}=90^{\circ}, \mathrm{PR}=3 \mathrm{~cm}, \mathrm{QR}=8 \mathrm{~cm}$
$\angle \mathrm{Q}=90^{\circ}, \mathrm{PR}=8 \mathrm{~cm}, \mathrm{PQ}=5 \mathrm{~cm}$

Solution

(i) Here, $\angle \mathrm{B}=\angle \mathrm{P}=90^{\circ}$, hypotenuse, $\mathrm{AC}=$ hypotenuse, $\mathrm{RQ}(=8 \mathrm{~cm})$ and side $\mathrm{AB}=$ side RP ($=3 \mathrm{~cm}$)
So, $\triangle \mathrm{ABC} \cong \triangle \mathrm{RPQ}$ (By RHS Congruence rule). [Fig 7.23(i)]

Fig 7.23
(ii) Here, $\angle \mathrm{A}=\angle \mathrm{Q}\left(=90^{\circ}\right)$ and side $\mathrm{AC}=$ side $\mathrm{PQ}(=5 \mathrm{~cm})$.

But hypotenuse BC \neq hypotenuse PR [Fig 7.23(ii)]
So, the triangles are not congruent.

Example 9

InFig7.24, $\mathrm{DA} \perp \mathrm{AB}, \mathrm{CB} \perp \mathrm{AB}$ and $\mathrm{AC}=\mathrm{BD}$.
State the three pairs of equal parts in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DAB}$. Which of the following statements is meaningful?
(i) $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$
(ii) $\Delta \mathrm{ABC} \cong \triangle \mathrm{ABD}$

Fig 7.24

Solution

The three pairs of equal parts are:

$$
\begin{aligned}
\angle \mathrm{ABC} & =\angle \mathrm{BAD}\left(=90^{\circ}\right) \\
\mathrm{AC} & =\mathrm{BD}(\text { Given }) \\
\mathrm{AB} & =\mathrm{BA}(\text { Common side }) \\
\text { From the above, } \quad \triangle \mathrm{ABC} & \cong \triangle \mathrm{BAD}(\text { By RHS congruence rule }) .
\end{aligned}
$$

So, statement (i) is true
Statement (ii) is not meaningful, in the sense that the correspondence among the vertices is not satisfied.

TRY THESE

1. In Fig 7.25, measures of some parts of triangles _are given. By applying RHS congruence rule, state which pairs of triangles are congruent. In case of congruent triangles, write the result in symbolic form.

Fig 7.26
(iii) Is $\angle \mathrm{DCB}=\angle \mathrm{EBC}$? Why or why not?
4. ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$ and AD is one of its altitudes (Fig 7.27).
(i) State the three pairs of equal parts in $\triangle \mathrm{ADB}$ and $\Delta \mathrm{ADC}$.
(ii) Is $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$? Why or why not?
(iii) Is $\angle \mathrm{B}=\angle \mathrm{C}$? Why or Why not?
(iv) Is $\mathrm{BD}=\mathrm{CD}$? Why or why not?

Fig 7.27

We now turn to examples and problems based on the criteria seen so far.
Exercise 7.2

1. Which congruence criterion do you use in the following?
(a) Given: $\mathrm{AC}=\mathrm{DF}$
$\mathrm{AB}=\mathrm{DE}$
$\mathrm{BC}=\mathrm{EF}$
So, $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
(b) Given: $\mathrm{ZX}=\mathrm{RP}$

$\mathrm{RQ}=\mathrm{ZY}$
$\angle \mathrm{PRQ}=\angle \mathrm{XZY}$
So, $\triangle \mathrm{PQR} \cong \triangle \mathrm{XYZ}$
(c) Given: $\angle \mathrm{MLN}=\angle \mathrm{FGH}$
$\angle \mathrm{NML}=\angle \mathrm{GFH}$
$\mathrm{ML}=\mathrm{FG}$
So, $\Delta \mathrm{LMN} \cong \Delta \mathrm{GFH}$
(d) Given: $\mathrm{EB}=\mathrm{DB}$
$\mathrm{AE}=\mathrm{BC}$
$\angle \mathrm{A}=\angle \mathrm{C}=90^{\circ}$
So, $\triangle \mathrm{ABE} \cong \triangle \mathrm{CDB}$

2. You want to show that $\Delta \mathrm{ART} \cong \triangle \mathrm{PEN}$,
(a) If you have to use $\mathbf{S S S}$ criterion, then you need to show
(i) $\mathrm{AR}=$
(ii) $\mathrm{RT}=$
(iii) $\mathrm{AT}=$
(b) If it is given that $\angle \mathrm{T}=\angle \mathrm{N}$ and you are to use $\mathbf{S A S}$ criterion, you need to have
(i) $\mathrm{RT}=$
and
(ii) $\mathrm{PN}=$
(c) If it is given that $\mathrm{AT}=\mathrm{PN}$ and you are to use ASA criterion, you need to have

(i) ?
(ii) ?
3. You have to show that $\Delta \mathrm{AMP} \cong \triangle \mathrm{AMQ}$. In the following proof, supply the missing reasons.

Steps	Reasons
(i). $\mathrm{PM}=\mathrm{QM}$	(i) \ldots
(ii) $\angle \mathrm{PMA}=\angle \mathrm{QMA}$	(ii) \ldots
(iii) $\mathrm{AM}=\mathrm{AM}$	(iii) \ldots
(iv) $\triangle \mathrm{AMP} \cong \triangle \mathrm{AMQ}$	(iv) \ldots

4. In $\triangle \mathrm{ABC}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{B}=40^{\circ}$ and $\angle \mathrm{C}=110^{\circ}$

In $\triangle \mathrm{PQR}, \angle \mathrm{P}=30^{\circ}, \angle \mathrm{Q}=40^{\circ}$ and $\angle \mathrm{R}=110^{\circ}$
A student says that $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$ by AAA congruence criterion. Is he justified? Why or why not?
5. In the figure, the two triangles are congruent.

The corresponding parts are marked. We can write Δ RAT ?
6. Complete the congruence statement:

7. In a squared sheet, draw two triangles of equal areas such that
(i) the triangles are congruent.
(ii) the triangles are not congruent.

What can you say about their perimeters?
8. Draw a rough sketch of two triangles such that they have five pairs of congruent parts but still the triangles are not congruent. R
9. If $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are to be congruent,
 name one additional pair of corresponding parts. What criterion did you use?
10. Explain, why $\triangle \mathrm{ABC} \cong \Delta$ FED.

Enrichment activity

We saw that superposition is a useful method to test congruence of plane figures. We discussed conditions for congruence of line segments, angles and triangles. You can now try to extend this idea to other plane figures as well.

1. Consider cut-outs of different sizes of squares. Use the method of superposition to find out the condition for congruence of squares. How does the idea of corresponding parts‘ under congruence apply? Are there corresponding sides? Are there corresponding diagonals?
2. What happens if you take circles? What is the condition for congruence of two circles? Again, you can use the method of superposition. Investigate.
3. Try to extend this idea to other plane figures like regular hexagons, etc.
4. Take two congruent copies of a triangle. By paper folding, investigate if they have equal altitudes. Do they have equal medians? What can you say about their perimeters and areas?

What Have We Discussed

1. Congruent objects are exact copies of one another.
2. The method of superposition examines the congruence of plane figures.
3. Two plane figures, say, F_{1} and F_{2} are congruent if the trace-copy of F_{1} fits exactly on that of F_{2}. We write this as $F_{1} \cong F_{2}$.
4. Two line segments, say, $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$ are congruent if they have equal lengths. We write this as $\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$. However, it is common to write it as $\overline{\mathrm{AB}}=\overline{\mathrm{CD}}$.
5. Two angles, say, $\angle \mathrm{ABC}$ and $\angle \mathrm{PQR}$, are congruent if their measures are equal. We write this as $\angle \mathrm{ABC} \cong \angle \mathrm{PQR}$ or as $\mathrm{m} \angle \mathrm{ABC}=\mathrm{m} \angle \mathrm{PQR}$. However, in practice, it is common to write it as $\angle \mathrm{ABC}=\angle \mathrm{PQR}$.
6. SSS Congruence of two triangles:

Under a given correspondence, two triangles are congruent if the three sides of the one are equal to the three corresponding sides of the other.
7. SAS Congruence of two triangles:

Under a given correspondence, two triangles are congruent if two sides and the angle included between them in one of the triangles are equal to the corresponding sides and the angle included between them of the other triangle.

8. ASA Congruence of two triangles:

Under a given correspondence, two triangles are congruent if two angles and the side included between them in one of the triangles are equal to the corresponding angles and the side included between them of the other triangle.
9. RHS Congruence of two right-angled triangles:

Under a given correspondence, two right-angled triangles are congruent if the hypotenuse and a leg of one of the triangles are equal to the hypotenuse and the corresponding leg of the other triangle.
10. There is no such thing as AAA Congruence of two triangles:

Two triangles with equal corresponding angles need not be congruent. In such a correspondence, one of them can be an enlarged copy of the other. (They would be congruent only if they are exact copies of one another).

Comparing Quantities

Chapter 8

8.1 Introduction

In our daily life, there are many occasions when we compare two quantities. Suppose we are comparing heights of Maria and Ali. We find that 1. Maria is two times taller than Ali.
Or
2. Ali‘s height is $\frac{1}{2}$ of Maria‘s height.

Consider another example, where 20 marbles are divided between Suraiya and
Aamir such that Suraiya has 12 marbles and
Aamir has 8 marbles. We say,

1. Suraiya has $\frac{3}{2}$ times the marbles

that Aamir has.
2. Aamir has $\frac{2}{3}$ part of what Suraiya has.

Yet another example is where we compare speeds of a Cheetah and a Man. The speed of a Cheetah is 6 times the speed of a Man.

Or
The speed of a Man is $\frac{1}{6}$ of the speed of the Cheetah.
Do you remember comparisons like this? In Class VI, we have learnt to make comparisons by saying how many times one quantity is of the other. Here, we see that it can also be inverted and written as what part one quantity is of the other.

In the given cases, we write the ratio of the heights as:
Maria‘s height: Ali‘s height is 150:75 or 2: 1.
Can you now write the ratios for the other comparisons?
These are relative comparisons and could be same for two different situations.
If Maria's height was 150 cm and Ali's was 100 cm , then the ratio of their heights would be,
Maria‘s height: Ali‘s height $=150: 100=$ or $\frac{150}{100}=\frac{3}{2}$ or $3: 2$. This is same as the ratio for Suraiya‘s to Aamir's share of marbles.

Thus, we see that the ratio for two different comparisons may be the same. Remember that to compare two quantities, the units must be the same.

Example 1

Find the ratio of 3 km to 300 m .

Solution

First convert both the distances to the same unit.
So, $3 \mathrm{~km}=3 \times 1000 \mathrm{~m}=3000 \mathrm{~m}$.
Thus, the required ratio, $3 \mathrm{~km}: 300 \mathrm{~m}$ is $3000: 300=10: 1$.

8.2 Equivalent Ratios

Different ratios can also be compared with each other to know whether they are equivalent or not. To do this, we need to write the ratios in the form of fractions and then compare them by converting them to like fractions. If these like fractions are equal, we say the given ratios are equivalent.

Example 2

Are the ratios 1:2 and 2: 3 equivalent?

Solution

To check this, we need to know whether $\frac{1}{2}=\frac{2}{3}$
We have, $\frac{1}{2}=\frac{1 \times 3}{2 \times 3}=\frac{3}{6} ; \frac{2}{3}=\frac{2 \times 2}{3 \times 2}=\frac{4}{6}$
We find that, $\frac{3}{6}<\frac{4}{6}$ which means that $\frac{1}{2}<\frac{2}{3}$
Therefore, the ratio 1:2 is not equivalent the ratio $2: 3$.
Use of such comparisons can be seen by the following example.

Example 3

Following is the performance of a cricket team in the matches it played:

Year	Wins	Losses
Last Year	8	2
This Year	4	2

In which year was the record better?
How can you say so?

Solution

Last year, Wins: Losses $=8: 2=4: 1$
This year, Wins: Losses $=4: 2=2: 1$
Obviously, 4: $1>2$: 1 (In fractional form, $\frac{4}{1}>\frac{2}{1}$)
Hence, we can say that the team performed better last year.
In Class VI, we have also seen the importance of equivalent ratios. The ratios which are equivalent are said to be in proportion. Let us recall the use of proportions.

Keeping things in proportion and getting Solutions

Asiya made a sketch of the building she lives in and drew sketch of her mother standing beside the building.

Muneeza said, There seems to be something wrong with the drawing"

Can you say what is wrong? How can you say this? In this case, the ratio of heights in the drawing should the same as the ratio of actual heights. That is

be

$$
\frac{\text { Actual height of building }}{\text { Actual height of mother }}=\frac{\text { Height of building in drawing }}{\text { Height of mother in the drawing }} .
$$

Only then would these be in proportion. Often when proportions are maintained, the drawing seems pleasing to the eye.

Another example where proportions are used is in the making of national flags.
Do you know that the flags are always made in a fixed ratio of length to its breadth? These may be different for different countries but are mostly around 1.5: 1 or 1.7: 1 .

We can take an approximate value of this ratio as 3: 2. Even the Indian post card is around the same ratio.

Now, can you say whether a card with length 4.5 cm and breadth 3.0 cm is near to this ratio. That is we need to ask, is 4.5: 3.0 equivalent to $3: 2$?
We note that 4.5: $3.0=\frac{4.5}{3.0}=\frac{45}{30}=\frac{3}{2}$

Hence, we see that 4.5: 3.0 is equivalent to $3: 2$.
We see a wide use of such proportions in real life. Can you think of some more situations?
We have also learnt a method in the earlier classes known as Unitary Method in which we first find the value of one unit and then the value of the required number of units. Let us see how both the above methods help us to achieve the same thing.

Example 4

A map is given with a scale of $2 \mathrm{~cm}=1000 \mathrm{~km}$. What is the actual distance between the two places in kms, if the distance in the map is 2.5 cm ?

Solution

```
Aslam does it like this
Let distance \(=x \mathrm{~km}\)
then, \(1000: x=2: 2.5\)
\(\frac{1000}{x}=\frac{2}{2.5}\)
\(\frac{1000 \times 2.5}{x} \frac{2}{2.5} \quad x \quad 2.5\)
\(1000 \times 2.5=x \times 2\)
\(x=1250\)
```

Aslam has solved it by equating ratios to make proportions and then by solving the equation. Saima has first found the distance that corresponds to 1 cm and then used that to find what 2.5 cm would correspond to. She used the unitary method.

Let us solve some more examples using the unitary method.

Saima does it like this

2 cm means 1000 km .
So, 1 cm means $\frac{1000}{2} \mathrm{~km}$
Hence, 2.5 cm means $\frac{1000}{2} 2.5 \mathrm{~km}$
$=1250 \mathrm{~km}$

Example 5
6 bowls cost Rs 90 . What would be the cost of 10 such bowls?

Solution

Cost of 6 bowls is Rs 90 .
Therefore, cost of 1 bowl Rs $\frac{90}{6}$
Hence, cost of 10 bowls $=$ Rs $\frac{90}{6} \times 10=$ Rs 150

Example 6
The car that I own can go 150 km with 25 litres of petrol. How far can it go with 30 litres of petrol?

Solution

With 25 litres of petrol, the car goes 150 km .
With 1 litre the car will go $\frac{150}{25} \mathrm{~km}$.
Hence, with 30 litres of petrol it would go $\frac{150}{25} \times 30 \mathrm{~km}=180 \mathrm{~km}$

In this method, we first found the value for one unit or the unit rate. This is done by the comparison of two different properties. For example, when you compare total cost to number of items, we get cost per item or if you take distance travelled to time taken, we get distance per unit time.
Thus, you can see that we often use per to mean for each.
For example, km per hour, children per teacher etc., denote unit rates.

THINK, DISCUSS AND WRITE

An ant can carry 50 times its weight. If a person can do the same, how much would you be able to carry?

Exercise 8.1

1. Find the ratio of:
(a) Rs 5 to 50 paise
(b) 15 kg to 210 g
(c) 9 m to 27 cm
(d) 30 days to 36 hours
2. In a computer lab, there are 3 computers for every 6 students. How many computers will be needed for 24 students?
3. Population of Rajasthan $=570$ laths and population of $\mathrm{UP}=1660$ lakhs. Area of Rajasthan $=3$ lakh km^{2} and area of $U P=2$ lakh km^{2}.
(i) How many people are there per km 2 in both these States?
(ii) Which State is less populated?

8.3 Percentage - Another Way of Comparing Quantities

Aamina's Report
Total 320/400
Percentage:80

Rukaiya‘s Report
Total 300/360
Percentage: 83.3

Aamina said that she has done better as she got 320 marks whereas Rukaiya got only 300 . Do you agree with her? Who do you think has done better?

Mehreen told them that they cannot decide who has done better by just comparing the total marks obtained because the maximum marks out of which they got the marks are not the same.

She said why don't you see the Percentages given in your report cards? Aamina's Percentage was 80 and Rukaiya‘s was 83 . So, this shows Rukaiya has done better. Do you agree?

Percentages are numerators of fractions with denominator 100 and have been used in comparing results. Let us try to understand in detail about it.

8.3.1 Meaning of Percentage

Percent is derived from Latin word per centum' meaning per hundred ${ }^{\text {‘ }}$

Per cent is represented by the symbol $u /$ and means hundredths too. That is 1% means
1 out of hundred or one hundredth. It can be written as: $1 \%=\frac{1}{100}=0.01$
To understand this, let us consider the following example.
Rafiya made a table top of 100 different coloured tiles. She counted yellow, green, red and blue tiles separately and filled the table below. Can you help her complete the table?

Colour	Number of Tiles	Rate per Hundred	Fraction	Written as	Read as
Yellow	14	14	$\frac{14}{100}$	14%	14 per cent
Green	26	26	$\frac{26}{100}$	26%	26 per cent
Red	35	35	----	----	----
Blue	25	----	----	----	----
Total	$\mathbf{1 0 0}$				

TRY THESE

1. Find the percentage of children of different heights for the following data.

Height	Number of Children	In Fraction	In Percentage
110 cm	22		
120 cm	25		
128 cm	32		
130 cm	21		
Total	$\mathbf{1 0 0}$		

2. A shop has the following number of shoe pairs of different sizes.

Size 2:20 Size 3:30 Size 4:28
Size 5:14 Size 6:8
Write this information in a tubular form as done earlier and find the Percentage of each shoe size available in the shop.
Percentages when total is not hundred
In all these examples, the total number of items add up to 100 . For example, Rafiya had 100 tiles in all, there were 100 children and 100 shoe pairs. How do we calculate Percentage of an item if the total number of items do not add up to 100 ? In such cases, we need to convert the fraction to an equivalent fraction with denominator 100. Consider the following example. You have a necklace with twenty beads in two colours.

Colour	Number of Beads	Fraction	Denominator Hundred	In Percentage
Red	8	$\frac{8}{20}$	$\frac{8}{20} \times \frac{100}{100}=\frac{40}{100}$	40%
Blue	12	$\frac{12}{20}$	$\frac{12}{20} \times \frac{100}{100}=\frac{60}{100}$	60%
Total	$\mathbf{2 0}$			

Asif found the Percentage of red beads like this

Out of 20 beads, the number of red beads are 8 .
Hence, out of 100 , the number of red beads are

$$
\frac{8}{20} \times 100=40(\text { out of hundred })=40 \%
$$

Aasia does it like this

$$
\frac{8}{20} \times \frac{8 \times 5}{20 \times 5}
$$

$$
=\frac{40}{100}=40 \%
$$

We see that these three methods can be used to find the Percentage when the total does not add to give 100. In the method shown in the table, we multiply the fraction by $\frac{100}{100}$
This does not change the value of the fraction. Subsequently, only 100 remains in the denominator.
Asif has used the unitary method. Aasia has multiplied by $\frac{5}{5}$ to get 100 in the denominator. You can use whichever method you find suitable. May be, you can make your own method too.

The method used by Asif can work for all ratios. Can the method used by Aasia also work for all ratios? Asif says Aasia's method can be used only if you can find a natural number which on multiplication with the denominator gives 100 . Since denominator was 20 , she could
multiply it by 5 to get 100 . If the denominator was 6 , she would not have been able to use this method. Do you agree?

TRY THESE

1. A collection of 10 chips with different colours is given.

Colour	Number	Fraction	Denominator Hundred	In Percentage
Green				
Blue				
Red				
Total				

Fill the table and find the percentage of chips of each colour

2. Mariayam has a collection of bangles. She has 20 gold bangles and 10 silver bangles. What is the percentage of bangles of each type? Can you put it in a tabular form as done in the above examnle?

THINK, DISCUSS AND WRITE

1. Look at the example below and in each of them, discuss which is better for comparison. In atmosphere, 1 g of air contains:

2. A shirt has:

8.3.2 Converting Fractional Numbers to Percentage

Fractional numbers can have different denominator. To compare fractional numbers, we need a common denominator and we have seen that it is more convenient to compare if our denominator is 100 . That is, we are converting the fractions to Percentages. Let us try converting different fractional numbers to Percentages.

Example 7

Write $\frac{1}{3}$ as per cent.

Solution

We have, $\quad \frac{1}{3}=\frac{1}{3} \times \frac{100}{100}=\frac{1}{3} \times 100 \%$

$$
=\frac{100}{3} \%=33 \frac{1}{3} \%
$$

Example 8

Out of 25 children in a class, 15 are girls. What is the percentage of girls?

Solution

Out of 25 children, there are 15 girls.
Therefore, percentage of girls $=\frac{15}{25} \times 100=60$. There are 60% girls in the class.

Example 9

Convert $\frac{5}{4}$ to per cent.
Solution
We have, $\frac{5}{4}=\frac{5}{4} \times 100 \%=125 \%$
From these examples, we find that the percentages related to proper fractions are less than 100 whereas percentages related to improper fraction are more than 100.

THINK, DISCUSS AND WRITE

(i) Can you eat 50% of a cake? Can you eat 100% of a cake?

Can you eat 150% of a cake?
(ii) Can a price of an item go up by 50% ? Can a price of an item go up by 100% ?

Can a price of an item go up by 150% ?

8.3.3 Converting Decimals to Percentage

We have seen how fractions can be converted to per cents. Let us now find how decimals can be converted to per cents.

Example 10

Convert the given decimals to per cents:
(a) 0.75
(b) 0.09
(c) 0.2

Solution

(a) $0.75=0.75 \times 100 \%$
(b) $0.09=\frac{9}{100}=9 \%$

$$
=\frac{75}{100} \times 100 \%=75 \%
$$

(c) $0.2=\frac{2}{10} \times 100 \%=20 \%$

1. Convert the following to per cents:
(a) $\frac{12}{6}$
(b) 3.5
(c) $\frac{49}{50}$
(d) $\frac{2}{2}$
(e) 0.05
2. (i) Out of 32 students, 8 are absent. What per cent of the student are absent?
(ii) There are 25 radios, 16 of them are out of order. What per cent of radios are out of order?
(iii) A shop has 500 parts, out of which 5 are defective. What percent are defective?
(iv) There are 120 voters, 90 of them voted yes. What per cent voted yes?

8.3.4 Converting Percentages to Fractions or Decimals

We have so far converted fractions and decimals to percentages. We can also do the reverse. That is, given per cents, we can convert them to decimals or fractions. Look at the table, observe and complete it:

Per Cent	1%	10%	25%	50%	90%	125%	250%
Fraction	$\frac{1}{100}$	$\frac{10}{100}=\frac{1}{10}$					
Decimal	0.01	0.10					

Parts always add to give a whole

In the examples for coloured tiles, for the heights of children and for gases in the air, we find that when we add the Percentages we get 100. All the parts that form the whole when added together gives the whole or 100%. So, if we are given one part, we can always find out the other part. Suppose, 30% of a given number of
 students are boys.

This means that if there were 100 students, 30 out of them would be boys and the remaining would be girls.

Then girls would obviously be $(100-30 \%)=70 \%$.

THINK, DISCUSS AND WRITE

Consider the expenditure made on a dress 20% on embroidery, 50% on cloth, 30% on stitching. Can you think of more such examples?

8.3.5 Fun with Estimation

Percentages help us to estimate the parts of an area.

Example 11

What per cent of the adjoining figure is shaded?
Solution
We first find the fraction of the figure that is shaded. From this fraction, the percentage of the shaded part can be found.
You will find that half of the figure is shaded. And, $\frac{1}{2}=\frac{1}{2} \times 100 \%=50 \%$ Thus, 50% of the figure is shaded.

8.4 Use of Percentages

8.4.1 Interpreting Percentages

We saw how percentages were helpful in comparison. We have also learnt to convert fractional numbers and decimals to percentages. Now, we shall learn how percentages can be used in real life. For this, we start with interpreting the following statements:

- 5% of the income is saved by Rasik. - 20% of Rukaiya's dresses are blue in colour.
- Saima gets 10% on every book sold by her.

What can you infer from each of these statements?
By 5% we mean 5 parts out of 100 or we write it as $\frac{5}{100}$. It means Rasik is saving

Rs 5 out of every Rs 100 that he earns. In the same way, interpret the rest of the statements given above.

8.4.2 Converting Percentages to -HowMany"

Consider the following examples:

Example 12

A survey of 40 children showed that 25% liked playing football. How many children liked playing football?

Solution

Here, the total number of children are 40 . Out of these, 25% like playing football. Muskan and Adnan used the following methods to find the number. You can choose either method.

Adnan does it like this

Out of 100, 25 like playing football So out of 40 , number of children who like playing football $=\frac{25}{100} \times 40=10$

Muskan does it like this

25% of $40=\frac{25}{100} \times 40=10$

Hence, 10 children out of 40 like playing football.

2. 8% children of a class of 25 like getting wet in the rain. How many children like getting wet in the rain?

Example 13

Sajad bought a sweater and saved Rs 20 when a discount of 25% was given. What was the price of the sweater before the discount?

Solution

Sajad had saved Rs 20 when price of sweater is reduced by 25%. This means that 25% reduction in the price is the amount saved by Sajad. Let us see how Mohsin and Aslam found the cost of the sweater.

Mohsin's solution

25% of the original price $=$ Rs 20
Let the price (in Rs) be P
So, 25% of $P=20$ or $=\frac{25}{100} \times P=20$
or, $\frac{P}{4}=20$ or $P=20 \times 4$
Therefore, $P=80$

Aslam's solution

Rs 25 is saved for every Rs 100
Amount for which Rs 20 is saved

$$
\frac{25}{100} \times 20=R s 80
$$

Thus both obtained the original price of sweater as Rs 80 .

TRY THESE

1. 9 is 25% of what number?

2. 75% of what number is 15 ?

Exercise 8.2

1. Covert the given fractional numbers to par cents.
(a) $\frac{1}{8}$
(b) $\frac{5}{4}$
(c) $\frac{3}{40}$
(d) $\frac{2}{7}$
2. Convert the given decimal fractions to per cents.
(a) 0.65
(b) 2.1
(c) 0.02
(d) 12.35
3. Estimate what part of the figures is coloured and hence find the per cent which is coloured.

(ii)

(iii)
4. Find:
(a) 15% of 250
(b) 1% of 1 hour
(c) 20% of Rs 2500
(d) 75% of 1 kg
5. Find the whole quantity if
(a) 5% of it is 600 .
(b) 12% of it is Rs 1080 .
(c) 40% of it is 500 km .
(d) 70% of it is 14 minutes. (e) 8% of it is 40 litres.
6. Convert given per cents to decimal fractions and also to fractions in simplest forms:
(a) $25^{\circ} / \mathrm{s}$
(b) 150%
(c) 20%
(d) 5%
7. In a city, 30% are females, 40% are males and remaining are children. What per cent are children?
8. Out of 15,000 voters in a constituency, 60% voted. Find the percentage of voters who did not vote. Can you now find how many actually did not vote?
9. Shazia saves Rs 400 from her salary. If this is 10% of her salary. What is her salary?
10. A local cricket team played 20 matches in one season. It won 25% of them. How many matches did they win?

8.4.3 Ratios to Percents

Sometimes, parts are given to us in the form of ratios and we need to convert those to percentages. Consider the following example:

Example 14

Reena‘s mother said, to make idlis, you must take two parts rice and one part urad dal. What percentage of such a mixture would be rice and what percentage would be urad dal?

Solution

In terms of ratio we would write this as Rice: Urad dal 2: 1.
Now, $2+1=3$ is the total of all parts. This means $\frac{2}{3}$ part is rice and $\frac{1}{3}$ part is urad dal.
Then, percentage of rice would be $\frac{2}{3} \times 100 \%=\frac{200}{3}=66 \frac{2}{3} \%$.
Percentage of urad dal would be $\frac{1}{3} \times 100 \%=\frac{100}{3}=33 \frac{1}{3} \%$.

Example 15

If Rs 250 is to be divided amongst Rouf, Rayees and Rahman, so that Ravi gets two parts, Raju three parts and Roy five parts. How much money will each get? What will it be in percentages?

Solution

The parts which the three boys are getting can be written in terms of ratios as 2: 3: 5. Total of the parts is $2+3+5=10$.

Amounts received by each Percentages of money for each

$$
\begin{array}{ll}
\frac{2}{10} \times \text { Rs } 250=\text { Rs } 50 & \text { Rouf gets } \frac{2}{10} \times 100 \%=20 \% \\
\frac{3}{10} \times \text { Rs } 250=\text { Rs } 75 & \text { Rayees gets } \frac{3}{10} \times 100 \%=30 \% \\
\frac{5}{10} \times \text { Rs } 250=\text { Rs } 125 & \text { Rahman gets } \frac{5}{10} \times 100 \%=50 \%
\end{array}
$$

1. Divide 15 sweets between Babloo and Tipu so that they get 20% and 80% of them respectively.
2. If angles of a triangle are in the ratio 2:3:4. Find the value of each angle.

8.4.4 Increase or Decrease as Per Cent

There are times when we need to know the increase or decrease in a certain quantity as percentlge. For example, if the population of a state increased from 5,50,000 to 6,05,000.

Then the increase in population can be understood better if we say, the population increased by 10%.
How do we convert the increase or decrease in a quantity as a percentage of the initial amount? Consider the following example.

Example 16

A school team won 6 games this year against 4 games won last year. What is the per cent increase?

Solution

The increase in the number of wins (or amount of change) $=6-4=2$.
Percentage increase $=\frac{\text { amount of change }}{\text { original amount or base }} \times 100$

$$
=\frac{\text { increase in the number of wins }}{\text { original in number of wins }} \times 100=\frac{2}{4} \times 100=50
$$

Example 17

The number of illiterate persons in a country decreased from 150 lakhs to 100 lakhs in 10 years. What is the percentage of decrease?

Solution

Original amount $=$ the number of illiterate persons initially $=150$ lakhs.
Amount of change $=$ decrease in the number of illiterate persons $=150-100=50$ lakhs. Therefore, the percentage of decrease

$$
=\frac{\text { amount of change }}{\text { original amount }} \times 100=\frac{50}{150} \times 100=33 \frac{1}{3}
$$

8.5 Prices Related To An Item Or Buying And Selling

The buying price of any item is known as its cost price. It is written in short as CP. The price at which you sell is known as the selling price or in short SP.

What would you say is better, to you sell the item at a lower price, same price or higher price than your buying price? You can decide whether the sale was profitable or not depending on the CP and SP . If $\mathrm{CP}<\mathrm{SP}$ then you made a profit $=\mathrm{SP}-\mathrm{CP}$.

If $\mathrm{CP}=\mathrm{SP}$ then you are in a no profit no loss situation.
If $\mathrm{CP}>\mathrm{SP}$ then you have a loss $=\mathrm{CP}-\mathrm{SP}$.
Let us try to interpret the statements related to prices of items.

* A toy bought for Rs 72 is sold at Rs 80 .
* AT-shirt bought for Rs 120 is sold at Rs 100 .
* A cycle bought for Rs 800 is sold for Rs 940 .

Let us consider the first statement.

The buying price (or CP) is Rs 72 and the selling price (or SP) is Rs 80 . This means SP is more than CP . Hence profit made $=\mathrm{SP}-\mathrm{CP}=$ Rs $80-$ Rs $72=$ Rs 8
Now try interpreting the remaining statements in similar way.

8.5.1 Profit or Loss as a Percentage

The profit or loss can be converted to a percentage. It is always calculated on the CP. For the above examples, we can find the profit $\%$ or loss $\%$.

Let us consider the example related to the toy. We have $\mathrm{CP}=$ Rs $72, \mathrm{SP}=$ Rs 80 , Profit $=$ Rs 8. To find the percentage of profit, Nusrat and Sakib have used the following methods.

$$
\begin{aligned}
& \text { Nusrat does it this way } \\
& \text { Profit per cent }=\frac{\text { Profit }}{\mathrm{CP}} \times 100=\frac{8}{72} \times 100 \\
&=\frac{1}{9} \times 100=11 \frac{1}{9}
\end{aligned}
$$

Sakib does it this way

On Rs 72 the profit is Rs 8

Thus, the profit is Rs 8 and per cent is $11 \frac{1}{9}$.

$$
\begin{aligned}
& \text { On Rs } 100 \text {, profit }=\frac{8}{72} 100 \\
& =11 \frac{1}{9} . \text { Thus, profit par cent }=11 \frac{1}{9} .
\end{aligned}
$$

Similarly you can find the loss per cent in the second situation. Here, $\mathrm{CP}=\mathrm{Rs} 120$, SP = Rs 100 .
Therefore, Loss $=$ Rs $120-$ Rs $100=$ Rs 20

$$
\begin{aligned}
\text { Loss per cent } & =\frac{\text { Loss }}{C P} \times 100 \\
& =\frac{20}{120} \times 100 \\
& =\frac{50}{3}=16 \frac{2}{3}
\end{aligned}
$$

On Rs 120, the loss is Rs 20
So on Rs 100, the loss
$=\frac{20}{120} \times 100=\frac{50}{3}=16 \frac{2}{3}$
Thus, loss per cent is $16 \frac{2}{3}$

Try the last case.
Now we see that given any two out of the three quantities related to prices that is, Cp, SP, amount of Profit or Loss or their percentage, we can find the rest.

Example 18

The cost of a flower vase is Rs 120 . If the shopkeeper sells it at a loss of 10%, find the price at which it is sold.

Solution

We are given that $\mathrm{CP}=$ Rs 120 and Loss per cent $=10$. We have to find the SP.

Arif does it like this

Loss of 10% means if CP is Rs 100 , Loss is Rs 10
Therefore, SP would be
Rs ($100-10$) = Rs 90
When CP is Rs 100 , SP is Rs 90.
Therefore, if CP were Rs 120 then
$\mathrm{SP}=\frac{90}{100} \times 120=$ Rs 108

Sameena does it like this

Loss is 10% of the cost price
$=10 \%$ of Rs 120
$=\frac{10}{100} \times 120=$ Rs 12
Therefore

$$
\begin{aligned}
\mathrm{SP} & =\mathrm{CP}-\text { Loss } \\
& =\text { Rs } 120-\text { Rs } 12=\text { Rs } 108
\end{aligned}
$$

Thus, by both methods we get the SP as Rs 108.

Example 19

Selling price of a toy car is Rs 540 . If the profit made by shopkeeper is 20%, what is the cost price of this toy?

Solution

We are given that $\mathrm{SP}=$ Rs 540 and the Profit $=20 \%$. We need to find the CP .

Maria does it like this

20 \% profit will mean if CP is Rs 100 , profit is Rs 20
Therefore, $\mathrm{SP}=100+20=120$
Now, when SP is Rs 120 , then CP is Rs 100.
Therefore, when SP is Rs 540, then

$$
\mathrm{CP}=\frac{100}{120} \times 540=\operatorname{Rs} 450
$$

Nayeem does it like this

Profit $=20 \%$ of CP and SP = CP + Profit
So, $540=\mathrm{CP}+20 \%$ of CP
$=\mathrm{CP}+\frac{20}{100} \times \mathrm{CP}=\left[1+\frac{1}{5}\right] \mathrm{CP}$.
$=\frac{6}{5} \mathrm{CP}$. Therefore, $540 \times \frac{5}{6}=\mathrm{CP}$
or Rs $450=\mathrm{CP}$

Thus, by both methods, the cost price is Rs 450 .

TRY THIESE

1. A shopkeeper bought a chair for Rs 375 and sold it for Rs 400 . Find the gain percentage.
2. Cost of an item is Rs 50. It was sold with a profit 12%. Find the selling price.
3. An article was sold for Rs 250 with a profit of 5%. What was its cost price?
4. An item was sold for Rs 540 at a loss of 5%. What was its cost price?

8.6 Charge Given on Borrowed Money or Simple Interest

Areena said that they were going to buy a new scooter. Aslam asked her whether they had money to buy it. Areena said her father was going to take a loan from a bank. The money you borrow is known as sum borrowed or principal.

This money would be used by the borrower for some time before it is returned. For keeping this money for some time the borrower has to pay some extra money to the bank. This is known as Interest.

You can find the amount you have to pay at the end of the year by adding the sum borrowed and the interest. That is, Amount $=$ Principal + Interest.

Interest is generally given in per cent for a period of one year. It is written as say 10% per year or per annum or in short as 10% p.a. (per annum).
10% p.a. means on every Rs 100 borrowed, Rs 10 is the interest you have to pay for one year. Let us take an example and see how it works.

Example 20

Asifa takes a loan of Rs 5,000 at 15% per year as rate of interest. Find the interest she has to pay at end of one year.

Solution

The sum borrowed $=$ Rs 5,000, Rate of interest $=15 \%$ per year.
This means if Rs 100 is borrowed, she has to pay Rs 15 as interest for one year. If she has borrowed Rs 5,000, then the interest she has to pay for one year

$$
=\operatorname{Rs} \frac{15}{100} \times 5000=\operatorname{Rs} 750
$$

So, at the end of the year she has to give an amount of Rs $5,000+$ Rs $750=$ Rs 5,750 .
We can write a general relation to find interest for one year. Take P as the principal or sum and $R \%$ as Rate per cent per annum.

Now on every Rs 100 borrowed, the interest paid is Rs R
Therefore, on Rs P borrowed, the interest paid for one year would be $\frac{R \times P}{100}=\frac{P \times R}{100}$.

8.6.1 Interest for Multiple Years

If the amount is borrowed for more than one year the interest is calculated for the period the money is kept for. For example, if Asifa returns the money at the end of two years and the rate of interest is the same then she would have to pay twice the interest i.e., Rs 750 for the first year and Rs 750 for the second. This way of calculating interest where principal is not changed is known as simple interest. As the number of years increase the interest also increases. For Rs 100 borrowed for 3 years at 18%, the interest to be paid at the end of 3 years is $18+18+18=3 \times 18=$ Rs 54 .

We can find the general form for simple interest for more than one year.
We know that on a principal of Rs P at $R \%$ rate of interest per year, the interest paid for one year is $\frac{R \times P}{100}$. Therefore, interest I paid for T years would be

$$
\frac{T \times R \times P}{100}=\frac{P \times R \times T}{100} \text { or } \frac{P R T}{100}
$$

And amount you have to pay at the end of T years is $A=P+I$

TRY THESE

1. Rs 10,000 is invested at 5% interest rate p.a. Find the interest at the end of one year.
2. Rs 3,500 is given at 7% p.a. rate of interest. Find the interest which will be relieved at the end of two years.
3. Rs 6,050 is borrowed at 6.5% rate of interest p.a. Find the interest and the amount to paid at the end of 3 years.
4. Rs 7,000 is borrowed at 3.5% rate of interest and the amount to paid at the end of the second year.

Just as in the case of pries related to items, if you are given any two of the three quantities in the relation $I \times \frac{P \times T \times R}{100}$, you could find the remaining quantity.

Example 21

If Mukhtar pays an interest of Rs 750 for 2 years on a sum of Rs 4,500 , find the rate of interest.

Solution 1

$\mathrm{I} \times \frac{P \times T \times R}{100}$
Therefore, $750=\frac{4500 \times 2 \times R}{100}$
or $\frac{750}{45 \times 2}=R$
Therefore, Rate $=8 \frac{1}{3} \%$

Solution 2

For 2 years, interest paid is Rs 750
Therefore, for 1 year, interest paid Rs $\frac{750}{2}=$ Rs 375
On Rs 4, 500, interest paid is Rs 375
Therefore, on Rs 100, rate of interest paid

$$
=\frac{375 \times 100}{4500}=8 \frac{1}{3} \%
$$

TRY THESE

1. You have Rs 2, 400 in your account and the interest rate is 5%. After how many years would you earn Rs 240 as interest.
2. On a certain sum the interest paid after 3 years is Rs 450 at 5% rate of interest per annum. Find the sum.

Exercise 8.3

1. Tell what is the profit or loss in the following transactions. Also find profit per cent or loss per cent in each case.
(a) Gardening shears bought for Rs 250 and sold for Rs 325 .
(b) A refrigerator bought for Rs 12,000 and sold at Rs 13,500.
(c) A cupboard bought for Rs 2,500 and sold at Rs 3,000.
(d) A skirt bought for Rs 250 and sold at Rs 150 .
2. Convert each part of the ratio to percentage:
(a) $3: 1$
(b) $2: 3: 5$
(c) $1: 4$
(d) 1:2:5
3. The population of a city decreased from 25,000 to 24,500 . Find the percentage decrease.
4. Aatif bought a car for Rs $3,50,000$. The next year, the price went up to Rs $3,70,000$. What was the Percentage of price increase?
5. I buy a T.V. for Rs 10,000 and sell it at a profit of 20%. How much money do I get for it?
6. A shopkeeper sells a washing machine for Rs 13,500 . He loses 20% in the bargain. What was the price at which he bought it?
7.

(i) Chalk contains calcium, carbon and oxygen in the ratio 10:3:12. Find the percentage of carbon in chalk
(ii) If in a stick of chalk, carbon is 3 g , what is the weight of the chalk stick?
8. Areena buys a book for Rs 275 and sells it at a loss of 15%. How much does she sell it for?
9. Find the amount to be paid at the end of 3 years in each case:
(a) Principal $=$ Rs 1,200 at 12% p.a.
(b) Principal $=$ Rs 7,500 at 5\% p.a.
(c) Principal $=$ Rs 1500 at 6% p.a.
10. What rate gives Rs 280 as interest on a sum of Rs 56,000 in 2 years?
11. If Mehak gives an interest of Rs 45 for one year at 9% rate p.a. What is the sum she has borrowed?
12. Aamina got a toy from the market of Rs 340 and she sell it to her friend for RS 450 . How much did she gain and what percent.

What Have We Discussed

1. We are often required to compare two quantities in our daily life. They maybe heights. weights, salaries, marks etc.
2. While comparing heights of two persons with heights 150 cm and 75 cm , we write it as the ratio 150: 75 or 2: 1 .
3. Two ratios can be compared by converting them to like fractions. If the two fractions are equal, we say the two given ratios are equivalent.
4. If two ratios are equivalent then the four quantities are said to be in proportion. For example, the ratios 8:2 and 16: 4 are equivalent therefore $8,2,16$ and 4 are in proportion.
5. A way of comparing quantities is percentage. Percentages are numerators of fractions with denominator 100 . Per cent means per hundred.
For example 82% marks means 82 marks out of hundred.
6. Fractions can be converted to percentages and vice-versa.

For example $\frac{1}{4}=\frac{1}{4} \times 100$ whereas $75 \%=\frac{75}{100}=\frac{3}{4}$
7. Decimals too can be converted to percentages and vice-versa. For example, $0.25=0.25 \times$ $100 \%==25 \%$
8. Percentages are widely used in our daily life,
(a) We have learnt to find exact number when a certain per cent of the total quantity is given.
(b) When parts of a quantity are given to us as ratios, we have seen how to convert them to percentages.
(c) The increase or decrease in a certain quantity can also be expressed as percentage.
(d) The profit or loss incurred in a certain transaction can be expressed in terms of percentages.
(e) While computing ml crest on an amount borrowed, the rate of interest is given in terms of per cents. For example, Rs 800 borrowed for 3 years at 12% per annum.

Chapter 9

9.1 Introduction

You began your study of numbers by counting objects around you. The numbers used for this purpose were called counting numbers or natural numbers. They are $1,2,3,4, \ldots$ By including 0 to natural numbers, we got the whole numbers, i.e., $0,1,2,3, \ldots$ The negatives of natural numbers were then put together with whole numbers to make up integers. Integers are $\ldots,-3,-2,-1,0,1,2,3, \ldots \mathrm{We}$, thus, extended the number system, from natural numbers to whole numbers and from whole numbers to integers.

You were also introduced to fractions. These are numbers of the form $\frac{\text { numerator }}{\text { denominator }}$, where the numerator is either 0 or a positive integer and the denominator, a positive integer. You compared two fractions, found their equivalent forms and studied all the four basic operations of addition, subtraction, multiplication and division on them.

In this Chapter, we shall extend the number system further. We shall introduce the concept of rational numbers alongwith their addition, subtraction, multiplication and division operations.

9.2 Need For Rational Numbers

Earlier, we have seen how integers could be used to denote opposite situations involving numbers. For example, if the distance of 3 km to the right of a place was denoted by 3 , then the distance of 5 km to the left of the same place could be denoted by -5 . If a profit of Rs 150 was represented by 150 then a loss of Rs 100 could be written as -100 .

There are many situations similar to the above situations that involve fractional numbers.
You can represent a distance of 750 m above sea level as $\frac{3}{4} \mathrm{~km}$. Can we represent 750 m below sea level in km ? Can we denote the distance of $\frac{3}{4} \mathrm{~km}$ below sea level by $\frac{-3}{4}$? We can see $\frac{-3}{4}$ is neither an integer, nor a fractional number. We need to extend our number system to include such numbers.

9.3 What are Rational Numbers?

The word reational' arises from the term _ratio'. You know that a ratio like 3:2 can also be written as $\frac{3}{2}$. Here, 3 and 2 are natural numbers.

Similarly, the ratio of two integers p and $q(q \neq 0)$, i.e., $p: q$ can be written in the form $\frac{p}{q}$. This is the form in which rational numbers are expressed.

A rational number is defined as a number that can be

 expressed in the from $\frac{p}{q}$, where p and q are integers and $q \neq 0$. Thus, $\frac{4}{5}$ is a rational number. Here, $p=4$ and $q=5$. Is $\frac{-3}{4}$ also a rational number? Yes, because $p=-3$ and $q=4$ are integers.

* You have seen many fractions like $\frac{3}{8}, \frac{4}{8}, 1 \frac{2}{3}$ etc. All fractions are rational numbers.

Can you say why?
How about the decimal numbers like 0.5, 2.3, etc.? Each of such numbers can be written as an ordinary fraction and, hence,
are rational numbers. For example, $0.5=\frac{5}{10}, 0.333=\frac{333}{1000}$ etc.

TRY THESE

1. Is the number $\frac{2}{-3}$ rational? Think about it.
2. List ten rational numbers.

Numerator and Denominator

In $\frac{p}{q}$, the integer p is the numerator, and the integer $q(\neq 0)$ is the denominator.
Thus, in $\frac{-3}{7}$, the numerator is -3 and the denominator is 7 .
Mention five rational numbers each of whose
(a) Numerator is a negative integer and denominator is a positive integer.
(b) Numerator is a positive integer and denominator is a negative integer.
(c) Numerator and denominator both are negative integers.
(d) Numerator and denominator both are positive integers.

* Are integers also rational numbers?

Any integer can be thought of as a rational number. For example, the integer - 5 is a rational number, because you can write it as $\frac{-5}{1}$. The integer 0 can also be written as $0=\frac{0}{2}$ or $\frac{0}{7}$ etc. Hence, it is also a rational number.

Thus, rational numbers include integers and fractions.

Equivalent rational numbers

A rational number can be written with different numerators and denominators. For example, consider the rational number $\frac{-2}{3}$.

$$
\frac{-2}{3}=\frac{-2 \times 2}{3 \times 2}=\frac{-4}{6} . \text { We see that } \frac{-2}{3} \text { is the same as } \frac{-4}{6} .
$$

Also, $\quad \frac{-2}{3}=\frac{(2 \times<5)}{3 \times<5)}=\frac{10}{-15}$. So $\frac{-2}{3}$ is also the same as $\frac{10}{-15}$.

Thus, $\frac{-2}{3}=\frac{-4}{6}=\frac{10}{-15}$. Such rational numbers that are equal to each other are said to be equivalent to each other.
Again, $\frac{10}{-15}=\frac{-10}{15}$ (How?)
By multiplying the numerator and denominator of a rational number by the same non zero integer, we obtain another rational number equivalent to the given rational number. This is exactly like obtaining equivalent fraction.

Just as multiplication, the division of the numerator and denominator by the same non zero integer, also gives equivalent rational numbers. For example,

$$
\frac{10}{-15}=\frac{10 \div(5)}{-15 \div<5}=\frac{-2}{3} \quad, \quad \frac{-12}{24}=\frac{-12 \div 12}{24 \div 12}=\frac{-1}{2}
$$

$$
\text { We write } \frac{-2}{3} \text { as }-\frac{2}{3}, \frac{-10}{15} \text { as }-\frac{10}{15} \text {, etc. }
$$

9.4 Positive And Negative Rational Numbers

Consider the rational number $\frac{2}{3}$. Both the numerator and denominator of this number are positive integers. Such a rational number is called a positive rational number. So, $\frac{3}{8}, \frac{5}{7}, \frac{2}{9}$ etc. are positive rational number.

TRY THESE

1. Is 5 a positive rational number?
2. List five more rational numbers.

The numerator of $\frac{-3}{5}$ is a negative integer,
whereas the denominator is a positive integer. Such a rational number is called a negative rational number. So, $\frac{-5}{7}, \frac{-3}{8}, \frac{-9}{5}$ etc. are negative rational numbers.

* Is $\frac{8}{-3}$ a negative rational number? We know that $\frac{8}{-3}=\frac{8 \times-1}{-3 \times-1}=\frac{-8}{3}$, and $\frac{-8}{3}$ is a negative rational number. So, $\frac{8}{-3}$ is a negative rational number. Similarly, $\frac{5}{-7}, \frac{6}{-5}, \frac{2}{-9}$ etc. are all negative rational numbers. Note that their numerators are positive and their denominators negative.
* The number 0 is neither a positive nor a negative rational number.
*What about $\frac{-3}{-5}$?

You will see that $\frac{-3}{-5}=\frac{-3 \times(1)}{-5 \times(1)}=\frac{3}{5}$. So, $\frac{-3}{-5}$ is a positive rational number.
Thus, $\frac{-2}{-5}, \frac{-5}{-3}$ etc. are positive numbers.
TRY THESE
Which of these are negative rational numbers?
(i)
$\frac{-2}{3}$
(ii) $\frac{5}{7} \quad$ (iii) $\frac{3}{-5}$
(iv) $0 \quad$ (v) $\frac{6}{11}$
(vi) $\frac{-2}{-9}$

9.5 Rational Numbers On A Number Line

You know how to represent integers on a number line. Let us draw one such number line.

The points to the right of 0 are denoted by + sign and are positive integers. The points to the left of 0 are denoted by - sign and are negative integers.

Representation of fractions on a number line is also known to you.
Let us see how the rational numbers can be represented on a number line.
Let us represent the number $-\frac{1}{2}$ on the number line.
As done in the case of positive integers, the positive rational numbers would be marked on the right of 0 and the negative rational numbers would be marked on the left of 0 .

To which side of 0 will you mark $-\frac{1}{2}$? Being a negative rational number, it would be marked to the left of 0 .

You know that while marking integers on the number line, successive integers are marked at equal intervels. Also, from 0 , the pair 1 and -1 is equidistant. So are the pairs 2 and $-2,3$ and -3 .
In the same way, the rational numbers $\frac{1}{2}$ and $-\frac{1}{2}$ would be at equal distance from 0 . We know how to mark the rational number $\frac{1}{2}$. It is marked at a point which is half the distance between 0 and 1. So, $-\frac{1}{2}$ would be marked at a point half the distance between 0 and -1 .

We know how to mark $\frac{3}{2}$ on the number line. It is marked on the right of 0 and lies halfway between 1 and 2. Let us now mark $\frac{-3}{2}$ on the number line. It lies on the left of 0 and is at the same distance as $\frac{3}{2}$ from 0 .
In decreasing order, we have, $\frac{-1}{2}, \frac{-2}{2}<-1, \frac{-3}{2}, \frac{-4}{2}<-2$, This shows that $\frac{-3}{2}$ lies between -1 and -2 . Thus, $\frac{-3}{2}$ lies between -1 and -2 .

Mark $\frac{-5}{2}$ and $\frac{-7}{2}$ in a similar way.
Similarly, $-\frac{1}{3}$ is to the left of zero and at the same distance from zero as $\frac{1}{3}$ is to the right. So as done above, $-\frac{1}{3}$ can be represented on the number line. Once we know how to represent $-\frac{1}{3}$ on the number line, we can go on representing $-\frac{2}{3},-\frac{4}{3},-\frac{5}{3}$ and so on. All other rational numbers with different denominators can be represented in a similar way.

9.6 Rational Numbers in Standard Form

Observe the rational numbers $\frac{3}{5}, \frac{-5}{8}, \frac{2}{7}, \frac{-7}{11}$.

The denominators of these rational numbers are positive integers and 1 is the only common factor between the numerators and denominators. Further, the negative sign occurs only in the numerator.
Such rational numbers are said to be in standard form.

A rational number is said to be in the standard form if its denominator is a positive integer and the numerator and denominator have no common factor other than 1.

If a rational number is not in the standard form, then it can be reduced to the standard form.

Recall that for reducing fractions to their lowest forms, we divided the numerator and the denominator of the fraction by the same non zero positive integer. We shall use the same method for reducing rational numbers to their standard form.

Example 1

Reduce $\frac{-45}{30}$ to the standard form.

Solution

We have, $\frac{-45}{30}=\frac{-45 \div 3}{30 \div 3}=\frac{-15}{10}=\frac{-15 \div 5}{10 \div 5}=\frac{-3}{2}$
We had to divide twice. First time by 3 and then by 5 . This could also be done as

$$
\frac{-45}{30}=\frac{-45 \div 15}{30 \div 15}=\frac{-3}{2}
$$

In this example, note that 15 is the HCF of 45 and 30.
Thus, to reduce the rational number to its standard form, we divide its numerator and denominator by their $\mathbf{H C F}$ ignoring the negative sign, if any. (The reason for ignoring the negative sign will be studied in Higher Classes)

If there is negative sign in the denominator, divide by $\xlongequal[=]{-} \mathbf{H C F}{ }^{〔}$.

Example 2

Reduce to standard form:
(i) $\frac{36}{-24}$
(ii) $\frac{-3}{-15}$

Solution

(i) The HCF of 36 and 24 is 12 .

Thus, its standard form would be obtained by dividing by -12 .
$\frac{36}{-24}=\frac{36 \div<12)}{24 \div(12)}=\frac{-3}{2}$
(ii) The HCF of 3 and 15 is 3 .

Thus, $\frac{-3}{-15}=\frac{-3 \div(-3)}{-15 \div<3)}=\frac{1}{5}$

TRY THESE

Find the standard form of
(i) $\frac{-18}{45}$
(ii) $\frac{-12}{18}$

9.7 Comparison Of Rational Numbers

We know how to compare two integers or two fractions and tell which is smaller or which is greater among them. Let us now see how we can compare two rational numbers.

* Two positive rational numbers, like $\frac{2}{3}$ and $\frac{5}{7}$ can be compared as studied earlier in the case of fractions.
* Asiya compared two negative rational numbers $-\frac{1}{2}$ and $-\frac{1}{5}$ using number line. She knew that the integer which was on the right side of the other integer, was the greater integer.

For example, 5 is to the right of 2 on the number line and $5>2$. The integer -2 is on the right of -5 on the number line and $-2>-5$.
She used this method for rational numbers also. She knew how to mark rational numbers on the number line. She marked $-\frac{1}{2}$ and $-\frac{1}{5}$ as follows:

Has she correctly marked the two points? How and why did she convert $-\frac{1}{2}$ to
$-\frac{5}{10}$ and $-\frac{1}{5}$ to $-\frac{2}{10}$? She found that $-\frac{1}{5}$ is to the right of $-\frac{1}{2}$. Thus, $-\frac{1}{5}>-\frac{1}{2}$ or $-\frac{1}{2}<-\frac{1}{5}$.
Can you compare $-\frac{3}{4}$ and $-\frac{2}{3} ?-\frac{1}{3}$ and $-\frac{1}{5}$?
We know from our study of fractions that $\frac{1}{5}<\frac{1}{2}$. And what did Asiya get for
$-\frac{1}{2}$ and $-\frac{1}{5}$? Was it not exactly the opposite?
You will find that, $\frac{1}{2}>\frac{1}{5}$ but $-\frac{1}{2}<-\frac{1}{5}$.
Do you observe the same for $-\frac{3}{4},-\frac{2}{3}$ and $-\frac{1}{3},-\frac{1}{5}$?
Asiya remembered that in integers she had studied but $-4<-3,5>2$ but $-5<-2$ etc.

* The case of pairs of negative rational numbers is similar. To compare two negative rational numbers, we compare them ignoring their negative signs and then reverse the order.
For example, to compare $-\frac{7}{5}$ and $-\frac{5}{3}$, we first compare $\frac{7}{5}$ and $\frac{5}{3}$.
We get $\frac{7}{5}<\frac{5}{3}$ and conclude that $\frac{-7}{5}<\frac{-5}{3}$.
Take five more such pairs and compare them.
Which is greater $-\frac{3}{8}$ or $-\frac{2}{7} ? ;-\frac{4}{3}$ or $-\frac{3}{2}$?
Comparison of a negative and a positive rational number is obvious. A negative rational number is to the left of zero whereas a positive rational number is to the right of zero on a number line. So, a negative rational number will always be less than a positive rational number.
Thus, $-\frac{2}{7}<\frac{1}{2}$.
* To compare rational numbers $\frac{-3}{-5}$ and $\frac{-2}{-7}$ reduce them to their standard forms and then compare them.

Example 3

Do $\frac{4}{-9}$ and $\frac{-16}{36}$ represent the same rational number?
Solution
Yes, because $\frac{-4}{9}=\frac{4 \times 4)}{9 \times 44}=\frac{-16}{36}$ or $\frac{-16}{36}=\frac{-16 \div 4}{33 \div-4}=\frac{-4}{-9}$.

9.8 Rational Numbers Between Two Rational Numbers

Ruksana wanted to count the whole numbers between 3 and 10. From her earlier classes, she knew there would be exactly 6 whole numbers between 3 and 10. Similarly, she wanted to know the total number of integers between -3 and 3 . The integers between -3 and 3 are $-2,-1,0,1,2$. Thus, there are exactly 5 integers between -3 and 3 .

Are there any integers between -3 and -2 ? No, there is no integer between -3 and -2 . Between two successive integers the number of integers is 0 .

Thus, we find that numbers of integers between two integers are limited (finite). Will the same happen in the case of rational numbers also?
Ruksana took two rational numbers $\frac{-3}{5}$ and $\frac{-1}{3}$.
She converted them to rational numbers with same denominators.
So

$$
\frac{-3}{5}=\frac{-9}{15} \text { and } \frac{-1}{3}=\frac{-5}{15}
$$

We have

$$
\frac{-9}{15}<\frac{-8}{15}<\frac{-7}{15}<\frac{-6}{15}<\frac{-5}{15} \text { or } \frac{-3}{5}<\frac{-8}{15}<\frac{-7}{15}<\frac{-6}{15}<\frac{-1}{3}
$$

She could find rational numbers $\frac{-8}{15}, \frac{-7}{15}, \frac{-6}{15}$ between $\frac{-3}{5}$ and $\frac{-1}{3}$.
Are the numbers $\frac{-8}{15}, \frac{-7}{15}, \frac{-6}{15}$ the only rational numbers between $-\frac{3}{5}$ and $-\frac{1}{3}$?
We have

$$
\frac{-3}{5}=\frac{-18}{30} \text { and } \frac{-8}{15}=\frac{-16}{30}
$$

And

$$
\frac{-18}{30}<\frac{-17}{30}<\frac{-16}{30} \text { i.e., } \frac{-3}{5}<\frac{-17}{30}<\frac{-8}{15}
$$

Hence $\quad \frac{-3}{5}<\frac{-17}{30}<\frac{-8}{15}<\frac{-7}{15}<\frac{-6}{15}<\frac{-1}{3}$
So we could find one more rational number between $\frac{-3}{5}$ and $\frac{-1}{3}$.

By using this method, you can insert as many rational numbers as you want between two rational numbers.

For example, $\quad \frac{-3}{5}=\frac{-3 \times 30}{5 \times 30}=\frac{-90}{150}$ and $\frac{-1}{3}=\frac{-1 \times 50}{3 \times 50}=\frac{-50}{150}$
We get 39 rational numbers

$$
\begin{aligned}
& {\left[\frac{-89}{150}, \ldots \frac{-51}{150}\right] \text { between } \frac{-90}{150} \text { and } \frac{-50}{150} \text { i.e., between }} \\
& \frac{-3}{5} \text { and } \frac{-1}{3} . \text { You will find that the list is unending. }
\end{aligned}
$$

Can you list five rational numbers between $\frac{-5}{3}$ and $\frac{-8}{7}$?

We can find unlimited number of rational numbers between any two rational numbers.

Example 4

List three rational numbers between -2 and -1 .

Solution

Let us write -1 and -2 as rational numbers with denominator 5. (Why?)
We have, $-1=\frac{-5}{5}$ and $-2=\frac{-10}{5}$

So, $\frac{-10}{5}<\frac{-9}{5}<\frac{-8}{5}<\frac{-7}{5}<\frac{-6}{5}<\frac{-5}{5}$ or $-2<\frac{-9}{5}<\frac{-8}{5}<\frac{-7}{5}<\frac{-6}{5}<-1$

The three rational numbers between -2 and -1 would be, $\frac{-9}{5}, \frac{-8}{5}, \frac{-7}{5}$
(You can take any three of $\frac{-9}{5}, \frac{-8}{5}, \frac{-7}{5}, \frac{-6}{5}$)

Exercise 5

Write four more numbers in following pattern:

$$
\frac{-1}{3}, \frac{-2}{6}, \frac{-3}{9}, \frac{-4}{12}, \ldots
$$

Solution

We have,

$$
\begin{aligned}
& \frac{-2}{6}=\frac{-1 \times 2}{3 \times 2}, \frac{-3}{9}=\frac{-1 \times 3}{3 \times 3}, \frac{-4}{12}=\frac{-1 \times 4}{3 \times 4} \\
& \text { or } \frac{-1 \times 1}{3 \times 1}=\frac{-1}{3}, \frac{-1 \times 2}{3 \times 2}=\frac{-2}{6}, \frac{-1 \times 3}{3 \times 3}=\frac{-3}{9}, \frac{-1 \times 4}{3 \times 4}=\frac{-4}{12}
\end{aligned}
$$

Thus, we observe a pattern in these numbers.
The other numbers would be $\frac{-1 \times 5}{3 \times 5}=\frac{-5}{15}, \frac{-1 \times 6}{3 \times 6}=\frac{-6}{18}, \frac{-1 \times 7}{3 \times 7}=\frac{-7}{21}$.

Exercise 9.1

1. List five rational numbers between:
(i) - 1 and 0
(ii) - 2 and -1
(iii) $\frac{-4}{5}$ and $\frac{-2}{3}$
(iv) $\frac{1}{2}$ and $\frac{2}{3}$
2. Write four more rational numbers in each of the following patterns:
(i) $\frac{-3}{5}, \frac{-6}{10}, \frac{-9}{15}, \frac{-12}{20}, \ldots$.
(ii) $\frac{-1}{4}, \frac{-2}{8}, \frac{-3}{12}, \ldots$.
(iii) $\frac{-1}{6}, \frac{2}{-12}, \frac{3}{-18}, \frac{4}{-24}, \ldots$.
(iv) $\frac{-2}{3}, \frac{2}{-3}, \frac{4}{-6}, \frac{6}{-9}, \ldots$.
3. Give four rational numbers equivalent to:
(i) $\frac{-2}{7}$
(ii) $\frac{5}{-3}$
(iii) $\frac{4}{9}$
4. Draw the number line and represent the following rational numbers on it:
(i) $\frac{3}{4}$
(ii) $\frac{-5}{8}$
(iii) $\frac{-7}{4}$
(iv) $\frac{7}{8}$
5. The points P, Q, R, S, T, U, A and B on the number line are such that, $T R=R S=S U$ and $A P=P Q=Q B$. Name the rational numbers represented by P, Q, R and S.

6. Which of the following pairs represent the same rational number?
(i) $\frac{-7}{21}$ and $\frac{3}{9}$
(ii) $\frac{-16}{20}$ and $\frac{20}{-25}$
(iii) $\frac{-2}{-3}$ and $\frac{2}{3}$
(iv) $\frac{-3}{5}$ and $\frac{-12}{20}$
(v) $\frac{8}{-5}$ and $\frac{-24}{15}$
(iv) $\frac{1}{3}$ and $\frac{-1}{9}$
(vii) $\frac{-5}{-9}$ and $\frac{5}{-9}$
7. Rewrite the following rational numbers in the simplest form:
(i) $\frac{-8}{6}$
(ii) $\frac{25}{45}$
(iii) $\frac{-44}{72}$
(iv) $\frac{-8}{10}$
8. Fill in the boxes with correct symbol out of $>,<$, and $=$.
(i) $\frac{-5}{7} \square \frac{2}{3}$
(ii) $\frac{-4}{5} \square \frac{-5}{7}$
(iii) $\frac{-7}{8} \square \frac{14}{-16}$
(iv) $\frac{-8}{5} \square \frac{-7}{4}$
(v) $\frac{1}{-3} \square \frac{-1}{4}$
(iv) $\frac{5}{-11} \square \frac{-5}{11}$
(vi) 0

9. Which is the greatest in each of the following:
(i) $\frac{2}{3}, \frac{5}{2}$
(ii) $\frac{-5}{6}, \frac{-4}{3}$
(iii) $\frac{-3}{4}, \frac{2}{-3}$
(iv) $\frac{-1}{4}, \frac{1}{4}$
(v) $-3 \frac{2}{7},-3 \frac{4}{5}$
10. Write the following rational numbers in ascending order:
(i) $\frac{-3}{5}, \frac{-2}{5}, \frac{-1}{5}$
(ii) $\frac{1}{3}, \frac{-2}{9}, \frac{-4}{3}$
(iii) $\frac{-3}{7}, \frac{-3}{2}, \frac{-3}{4}$

9.9 Operational on Rationals Numbers

You know how to add, subtract, multiply and divide integers as well as fractions. Let us now study these basic operations on rational numbers.

9.9.1 Addition

* Let us add two rational numbers with same denominators, say $\frac{7}{3}$ and $\frac{-5}{3}$.

We have $\frac{7}{3}+\left[\frac{-5}{3}\right]$
On the number line, we have:

The distance between two consecutive points is $\frac{1}{3}$. So adding $\frac{-5}{7}$ to $\frac{7}{3}$ will mean, moving to the left of $\frac{7}{3}$, making 5 jumps. Where do we reach? We reach at $\frac{2}{3}$.
So, $\frac{7}{3}+\left[\frac{-5}{3}\right]=\frac{2}{3}$.
Let us now try this way:

$$
\frac{7}{3}+\frac{(5)}{3}=\frac{7+(5)}{3}=\frac{2}{3}
$$

We get the same answer.
Find $\frac{6}{5}+\frac{(2)}{5}, \frac{3}{7}+\frac{(5)}{7}$ in both ways and check if you get the same answers.
Similarly, $\frac{-7}{8}+\frac{5}{8}$ would be

What do you get?
Also, $\frac{-7}{8}+\frac{5}{8}=\frac{-7+5}{8}=$? Are the two values same?

TRY THESE

Find: $\frac{-13}{7}+\frac{6}{7}, \frac{19}{5}+\left[\frac{-7}{5}\right]$

So, we find that while adding rational numbers with same denominators, we add the numerators keeping the denominators same.
Thus, $\frac{-11}{5}+\frac{7}{5}=\frac{-11+7}{5}=\frac{-4}{5}$

* How do we add rational numbers with different denominators? As in the case of fractions, we first find the LCM of the two denominators. Then, we find the equivalent rational numbers of the given rational numbers with this LCM as the denominator. Then, add the two rational numbers.

For example, let us add $\frac{-7}{5}$ and $\frac{-2}{3}$.
LCM of 5 and 3 is 15 .
So, $\frac{-7}{5}=\frac{-21}{15}$ and $\frac{-2}{3}=\frac{-10}{15}$
Thus, $\frac{-7}{5}+\frac{(2)}{3}=\frac{-21}{15}+\frac{(10)}{15}=\frac{-31}{15}$

Addictive Inverse

What will be $\frac{-4}{7}+\frac{4}{7}=$?

$\frac{-4}{7}+\frac{4}{7}=\frac{-4+4}{7}=0$. Also, $\frac{4}{7}+\left[\frac{-4}{7}\right]=0$.
Similarly, $\frac{-2}{3}+\frac{2}{3}=0=\frac{2}{3}+\left[\frac{-2}{3}\right]$
In the case of integers, we call -2 as the additive inverse of 2 and 2 as the additive inverse -2 .
For rational numbers also, we call $\frac{-4}{7}$ as the additive inverse of $\frac{4}{7}$ and $\frac{4}{7}$ as the additive inverse of $\frac{-4}{7}$. Similarly, $\frac{-2}{3}$ is the additive inverse of $\frac{2}{3}$ and $\frac{2}{3}$ is the additive inverse of $\frac{-2}{3}$.

TRY THESE

What will be the additive inverse of $\frac{-3}{9} ? \frac{-9}{11} ? \frac{5}{7}$?

Example 6

Sarwar walks $\frac{2}{3} \mathrm{~km}$ from a place P , towards east and then from there $1 \frac{5}{7} \mathrm{~km}$ towards west. Where will he be now from P ?

Solution

Let us denote the distance travelled towards east by positive sign. So, the distances towards west would be denoted by negative sign.
Thus, distance of Sarwar from the point P would be

$$
\begin{aligned}
& \frac{2}{3}+\left[-1 \frac{5}{7}\right]=\frac{2}{3}+\frac{-12}{7}=\frac{2 \times 7}{3 \times 7}+\frac{12 \times 3}{7 \times 3} \\
& =\frac{14-36}{21}=\frac{-22}{21}=-1 \frac{1}{21}
\end{aligned}
$$

Since it is negative, it means Sarwar is at a distance $1 \frac{1}{21} \mathrm{~km}$ towards west of P .

9.9.2 Subtraction

Sabena found the difference of two rational numbers $\frac{5}{7}$ and $\frac{3}{8}$ in this way:

$$
\frac{5}{7}-\frac{3}{8}=\frac{40-21}{56}=\frac{19}{56}
$$

Maria knew that for two integers a and b she could write $a-b=a+(-b)$
She tried this for rational numbers also and found, $\frac{5}{7}-\frac{3}{8}=\frac{5}{7}+\frac{(3)}{8}=\frac{19}{56}$.
Both obtained the same difference.
Try to find $\frac{7}{8}-\frac{5}{9}, \frac{3}{11}-\frac{8}{7}$ in both ways. Did you get the same answer?
So, we say while subtracting two rational numbers, we add the additive inverse of the rational number that is being subtracted, to the other rational number.

Thus, $1 \frac{2}{3}-2 \frac{4}{5}=\frac{5}{3}-\frac{14}{5}=\frac{5}{3}+$ additive inverse of $\frac{14}{5}=\frac{5}{3}+\frac{(14)}{5}$

$$
=\frac{-17}{15}=-1 \frac{2}{15}
$$

What will be $\frac{2}{7}-\left[\frac{-5}{6}\right]$?

$$
\frac{2}{7}-\left[\frac{-5}{6}\right]=\frac{2}{7}+\text { additiveinverseof }\left[\frac{-5}{6}\right]=\frac{2}{7}+\frac{5}{6}=\frac{47}{42}=1 \frac{5}{42}
$$

9.9.3 Multiplication

Let us multiply the rational number $\frac{-3}{5}$ by 2 , i.e., we find $\frac{-3}{5} \times 2$.
On the number line, it will mean two jumps of $\frac{3}{5}$ to the left.

Where do we reach? We reach at $\frac{-6}{5}$. Let us find it as we did in fractions.

$$
\frac{-3}{5} \times 2=\frac{-3 \times 2}{5}=\frac{-6}{5}
$$

We arrive at the same rational number.
Find $\frac{-4}{7} \times 3, \frac{-6}{5} \times 4$ using both ways. What do you observe?
So, we find that while multiplying a rational number by appositive integer, we multiply the numerator by that integer, keeping the denominator unchanged.

Let us now multiply a rational number by a negative integer,

$$
\frac{-2}{9} \times(5)=\frac{-2 \times(5)}{9}=\frac{10}{9}
$$

Remember, -5 can be written as $\frac{-5}{1}$
So, $\frac{-2}{9} \times \frac{-5}{1}=\frac{10}{9}=\frac{-2 \times(5)}{9 \times 1}$
Similarly, $\frac{3}{11} \times 2=\frac{3 \times(2)}{11 \times 1}=\frac{-6}{11}$
Based on these observations, we find that, $\frac{-3}{8} \times \frac{5}{7}=\frac{-3 \times 5}{8 \times 7}=\frac{-15}{56}$
So, as we did in the case of fractions, we multiply two rational numbers in the following way:
Step 1 Multiply the numerator of the two rational numbers.
Step 2 Multiply the denominators of the two rational numbers.
Step 3 Write the product result as $\frac{\text { Result of Step } 1}{\text { Result of Step } 2}$
Thus, $\frac{-3}{5} \times \frac{2}{7}=\frac{-3 \times 2}{5 \times 7}=\frac{-6}{35}$.
Also $\frac{-5}{8} \times \frac{-9}{7}=\frac{-5 \times(9)}{8 \times 7}=\frac{45}{56}$

9.9.4 Division

We have studied reciprocals of a fraction earlier. What is the reciprocal of $\frac{2}{7}$? It will be $\frac{7}{2}$.
We have extended this idea of reciprocals to rational numbers also.
The reciprocal of $\frac{-2}{7}$ will be $\frac{-7}{2}$ i.e., $\frac{-7}{2}$; that of $\frac{-3}{5}$ would be $\frac{-5}{3}$.

Product of reciprocals

The product of a rational number with its reciprocal is always 1
For example, $\frac{-4}{9} \times\left[\right.$ reciprocal of $\left.\frac{-4}{9}\right]$

$$
=\frac{-4}{9} \times \frac{-9}{4}=1
$$

Similarly, $\frac{-6}{13} \times \frac{-13}{6}=1$
Try some more examples and confirm this observation

Sakeena divided a rational number $\frac{4}{9}$ by another rational number $\frac{-5}{7}$ as,

$$
\frac{4}{9} \div \frac{-5}{7}=\frac{4}{9} \times \frac{7}{-5}=\frac{-28}{45}
$$

She used the idea of reciprocal as done in fractions.
Aamir first divided $\frac{4}{9}$ by $\frac{5}{7}$ and got $\frac{28}{45}$.
He finally said $\frac{4}{9} \div \frac{-5}{7}=\frac{-28}{45}$. How did he get that?
He divided them as fractions, ignoring the negative sign and then put the negative sign in the value so obtained.

Both of them got the same value $\frac{-28}{45}$. Try dividing $\frac{2}{3}$ by $\frac{-5}{7}$ both ways and see if you get the same answer.

This shows, to divide one rational number by the other rational numbers we multiply the rational number by the reciprocal of the other.

Thus, $\frac{6}{-5} \div \frac{-2}{3}=\frac{6}{-5} \times$ reciprocal of $\left(\frac{-2}{3}\right)=\frac{6}{-5} \times \frac{3}{-2}=\frac{18}{10}$

TRY THESE

Find: (i) $\frac{2}{3} \times \frac{-7}{8}$
(ii) $\frac{-6}{7} \times \frac{5}{7}$

Exercise 9.2

1. Find the sum:
(i) $\frac{5}{4}+\left(\frac{-11}{4}\right)$
(ii) $\frac{5}{3}+\frac{3}{5}$
(iii) $\frac{-9}{10}+\frac{22}{15}$
(iv) $\frac{-3}{-11}+\frac{5}{9}$
(v) $\frac{-8}{19}+\frac{-2}{57}$
(vi) $\frac{-2}{3}+0$
(vii) $-2 \frac{1}{3}+4 \frac{3}{5}$
2. Find
(i) $\frac{7}{24}-\frac{17}{36}$
(ii) $\frac{5}{63}-\left(\frac{-6}{21}\right)$
(iii) $\frac{-6}{13}-\left(\frac{-7}{15}\right)$
(iv) $\frac{-3}{8}-\frac{7}{11}$
(v) $-2 \frac{1}{9}-6$
3. Find the product:
(i) $\frac{9}{2} \times\left(\frac{-7}{4}\right)$
(ii) $\frac{3}{10} \times 9^{-}$,
(iii) $\frac{-6}{5} \times \frac{9}{11}$
(iv) $\frac{3}{7} \times\left(\frac{-2}{5}\right)$
(v) $\frac{3}{11} \times \frac{2}{5}$
(vi) $\frac{3}{-5} \times \frac{-5}{3}$
4. Find the value of:
(i) $44 \div \frac{2}{3}$
(ii) $\frac{-3}{5} \div 2$
(iii) $\frac{-4}{5} \div 3$,
(iv) $\frac{-1}{8} \div \frac{3}{4}$
(v) $\frac{-2}{13} \div \frac{1}{7}$
(vi) $\frac{-7}{12} \div\left(\frac{-2}{13}\right)$
(vii) $\frac{3}{13} \div\left(\frac{-4}{65}\right)$

What Have We Discussed

1. A number that can be expressed in the form $\frac{p}{q}$, where p and q are integers and $\mathrm{q} \neq 0$, is called a rational number. The numbers $\frac{-2}{7}, \frac{3}{8}, 3$ etc. are rational numbers.
2. All integers and fractions are rational numbers.
3. If the numerator and denominator of a rational number are multiplied or divided by a nonzero integer, we get a rational number which is said to be equivalent to the given rational number. For example $\frac{-3}{7}=\frac{-3 \times 2}{7 \times 2}=\frac{-6}{14}$. So, we say $\frac{-6}{14}$ is the equivalent form of $\frac{-3}{7}$. Also note that $\frac{-6}{14}=\frac{-6 \div 2}{14 \div 2}=\frac{-3}{7}$.
4. Rational numbers are classified as Positive and Negative rational numbers. When the numerator and denominator, both, are positive integers, it is a positive rational number. When either the numerator or the denominator is a negative integer, it is a negative rational number. For example, $\frac{3}{8}$ is a positive rational number whereas $\frac{-8}{9}$ is a negative rational number.
5. The number 0 is neither a positive nor a negative rational number.
6. A rational number is said to be in the standard form if its denominator is a positive integer and the numerator and denominator have no common factor other than 1 .
The numbers $\frac{-1}{3}, \frac{2}{7}$ etc. are in standard form.
7. There are unlimited number of rational numbers between two rational numbers.
8. Two rational numbers with the same denominator can be added by adding their numerators, keeping the denominator same. Two rational numbers with different denominators are added by first taking the LCM of the two denominators and then converting both the rational numbers to their equivalent forms having the LCM as the denominator. For example, $\frac{-2}{3}+\frac{3}{8}=\frac{-16}{24}+\frac{9}{24}=\frac{-16+9}{24}=\frac{-7}{24}$ Here, LCM of 3 and 8 is 24 .
9. While subtracting two rational numbers, we add the additive inverse of the rational number to be subtracted to the other rational number.

Thus, $\frac{7}{8}-\frac{2}{3}=\frac{7}{8}$ additive inverse of $\frac{2}{3}=\frac{7}{8}+\frac{(2)}{3}=\frac{21+(16)}{24}=\frac{5}{24}$.
10. To multiply two rational numbers, we multiply their numerators and denominators separately, and write the product as $\frac{\text { product of numerators }}{\text { product of denominators }}$.
11. To divide one rational number by the other non-zero number, we multiply the rational number by the reciprocal of the other. Thus,

$$
\frac{-7}{2} \div \frac{4}{3}=\frac{-7}{2} \times\left(\text { reciprocal of } \frac{4}{3}\right)=\frac{-7}{2} \times \frac{3}{4}=\frac{-21}{8}
$$

Chapter 10

10.1 Introduction

You are familiar with a number of shapes. You learnt how to draw some of them in the earlier classes. For example, you can draw a line segment of given length, a line perpendicular to a given line segment, an angle, an angle bisector, a circle etc.

Now, you will learn how to draw parallel lines and some types of triangles.
10.2 Construction of a Line Parallel to a Given Line, Through a Point Not on the Line

Let us begin with an activity (Fig 10.1)
(i) Take a sheet of paper. Make a fold. This fold represents a line l.
(ii) Unfold the paper. Mark a point A on the paper outside l.
(iii) Fold the paper perpendicular to the line such that this perpendicular passes through A.
Name the perpendicular AN.
(iv) Make a fold perpendicular to this perpendicular through the point A. Name the new perpendicular line as m. Now, $I \| m$. Do you see =why"?

Which property or properties of parallel lines can help you here to say that lines l and m are parallel.

(iii)

(v)

Fig 10.1

You can use any one of the properties regarding the transversal and parallel lines to make this construction using ruler and compasses only.

Step 1 Take a line $\underline{\underline{l}}$ ' and a point $\underline{\underline{A}}^{\text {' }}$ outside $\underline{\underline{l}}^{\text {l }}$ [Fig 10.2 (i)].

Step 2 Take any point B on l and join B to A [Fig 10.2(ii)].

Step 3 With B as centre and a convenient radius, draw an arc cutting l at C and BA at D [Fig 10.2(iii)].

Step 4 Now with A as centre and the same radius as in Step 3, draw an arc EF cutting AB at G [Fig 10.2 (iv)].

Step 5 Place the pointed tip of the compasses at C and adjust the opening so that the pencil tip is at D [Fig 10.2 (v)].

Step 6 With the same opening as in Step 5 and with G as centre, draw an arc cutting the arc EF at H [Fig 10.2 (vi)].

Step 7 Now, join AN to draw a line _m[Fig 10.2 (vii)].

Note that $\angle \mathrm{ABC}$ and $\angle \mathrm{BAH}$ are alternate interior angles. Therefore $m \| l$

Fig 10.2 (i) - (ii)

Think, Discuss and Write

1. In the above construction, can you draw any other line through A that would be also parallel to the line l ?
2. Can you slightly modify the above construction to use the idea of equal corresponding angles instead of equal alternate angles?

Exercise 10.1

1. Draw a line, say AB , take a point C outside it. Through C , draw a line parallel to AB using ruler and compasses only.
2. Draw a line l. Draw a perpendicular to l at any point on l. On this perpendicular choose a point $X, 4 \mathrm{~cm}$ away from l. Through X, draw a line m parallel to l.
3. Let l be a line and P be a point not on l. Through P , draw a line m parallel to l. Now join P to any point Q on l. Choose any other point R on m. Through R , draw a line parallel to PQ . Let this meet l at S . What shape do the two sets of parallel lines enclose?

10.3 Construction Of Triangles

It is better for you to go through this section after recalling ideas on triangles, in particular, the chapters on properties of triangles and congruence of triangles.

You know how triangles are classified based on sides or angles and the following important properties concerning triangles:

(i) The exterior angle of a triangle is equal in measure to the sum of interior opposite angles.
(ii) The total measure of the three angles of a triangle is 180°.
(iii) Sum of the lengths of any two sides of a triangle is greater than the length of the third side.
(iv) In any right-angled triangle, the square of
 the length of hypotenuse is equal to the sum of the squares of the lengths of the other two sides.

In the chapter on Congruence of Triangles‘, we saw that a triangle can be drawn if any one of the following sets of measurements are given:
(i) Three sides.
(ii) Two sides and the angle between them.
(iii) Two angles and the side between them.
(iv) The hypotenuse and a leg in the case of a right-angled triangle.

We will now attempt to use these ideas to construct triangles.

10.4 Constructing A Triangle When The Lengths of Its Three Sides Are Known (SSS Criterion)

In this section, we would construct triangles when all its sides are known. We draw first a rough sketch to give an idea of where the sides are and then begin by drawing any one of the three lines. See the following examples:

Example 1

Construct a triangle ABC , given that $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC} 6 \mathrm{~cm}$ and $\mathrm{AC}=7 \mathrm{~cm}$.

Solution

Step 1 First, we draw a rough sketch with given measure, (This will help us in deciding how to. proceed) [Fig 10.3(i)].

Step 2 Draw a line segment BC of length 6 cm [Fig 10.3(ii)].
Step 3 From B, point A is at a distance of 5 cm . So,

(ii) with B as centre, draw an arc of radius 5 cm . (Now A will be somewhere on this arc. Our job is to find where exactly A is) [Fig 10.3(iii)].

Step 4 From C, point A is at a distance of 7 cm . So, with C as centre, draw an arc of radius 7 cm . (A will be somewhere on this arc, we have to fix it) [Fig 10.3 (iv)].

Step 5 A has to be on both the arcs drawn. So, it is the point of intersection of arcs. Mark the point of intersection of arcs as A . Join AB and $\mathrm{AC} . \triangle \mathrm{ABC}$ is now ready [Fig 10.3(v)].

Fig 10.3 (i) - (v)

(v)

Do This

Now, let us construct another triangle DEF such that $\mathrm{DE}=5 \mathrm{~cm}$. $\mathrm{EF}=6 \mathrm{~cm}$, and $\mathrm{DF}=7 \mathrm{~cm}$. Take a cutout of $\triangle \mathrm{DEF}$ and place it on $\triangle \mathrm{ABC}$.
What do we observe?

We observe that $\triangle \mathrm{DEF}$ exactly coincides with $\triangle \mathrm{ABC}$. (Note that the triangles have been constructed when their three sides are given.) Thus, if three sides of one triangle are equal to the corresponding three sides of another triangle, then the two triangles are congruent. This is SSS congruency rule which we have learnt in our earlier chapter.

Think, Discuss and Write

A student attempted to draw a triangle whose rough figure is given here. He drew QR first. Then with Q as centre, he drew an arc of 3 cm and with R as centre, he drew an arc of 2 cm . But he could not get P. What is the reason? What property of triangle do you know in connection with this problem?

Can such a triangle exist? (Remember the property of triangles _The sum of any two sides of a triangle is always greater than the third side‘!)

Think, Discuss and Write

1. Construct $\triangle X Y Z$ in which $X Y=4.5 \mathrm{~cm}, Y Z=5 \mathrm{~cm}$ and $Z X=6 \mathrm{~cm}$.
2. Construct an equilateral triangle of side 5.5 cm .
3. Draw $\triangle \mathrm{PQR}$ with $\mathrm{PQ}=4 \mathrm{~cm}, \mathrm{QR}=3.5 \mathrm{~cm}$ and $\mathrm{PR}=4 \mathrm{~cm}$. What type of triangles?
4. Construct $\triangle \mathrm{ABC}$ such that $\mathrm{AB}=2.5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $\mathrm{AC}=6.5 \mathrm{~cm}$. Measure $\angle \mathrm{B}$.
10.5 Constructing A Triangle When The Lengths Of Two Sides And The Measure Of The Angle Between Them Are Known. (SAS Criterion)

Here, we have two sides given and the one angle between them. We first draw a sketch and then draw one of the given line segments. The other steps follow. See Example 2.

EXAMPLE 2

Construct a triangle PQR , given that $\mathrm{PQ}=$
$3 \mathrm{~cm}, \mathrm{QR}=5.5 \mathrm{~cm}$ and $\angle \mathrm{PQR}=60^{\circ}$.

Solution

Step 1 First, we draw a rough sketch with

(i) given measures. (This helps us to determine the procedure in construction) [Fig 10.5(i)].
Step 2 Draw a line segment QR of length 5.5 cm [Fig 10.5(ii)].

Step 3 At Q, draw QX making 60° with QR. (The point P must be somewhere on this ray of the angle) [Fig 10.5(iii)].

Step 4 (To fix P, the distance QP has been given).

With Q as centre, draw an arc of radius 3 cm . It cuts QX at the point $\mathrm{P}[\mathrm{Fig} 10.5(\mathrm{iv})]$.

Step 5 Join PR. $\triangle \mathrm{PQR}$ is now obtained (Fig 10.5(v)).

(v)

Fig 10.5 (i) - (v)

©o This

Let us now construct another triangle ABC such that $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=5.5 \mathrm{~cm}$ and $\mathrm{m} \angle \mathrm{ABC}=60^{\circ}$. Take a cut out of ABC and place it on $\triangle \mathrm{PQR}$. What do we observe? We observe that ABC exactly coincides wath PQR. Thus, if two sides and the included angle of one triangle are equal to the corresponding two sides and the included angle of another triangle, then the two triangles are congruent. This is SAS congruency rule which we have learnt in our earlier chapter. (Note that the triangles have been constructed when their two sides and the angle included between these two sides are given.) .

Think, Discuss and Write

In the above construction, lengths of two sides and measure of one angle were given. Now study the following problems:

In $\triangle \mathrm{ABC}$, if $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}$ and $\angle \mathrm{C}=30^{\circ}$. Can we draw this triangle? We may draw $\mathrm{AC}=5 \mathrm{~cm}$ and draw $\angle \mathrm{C}$ of measure 30°. CA is one arm of $\angle \mathrm{C}$. Point B should be lying on the other arm of $\angle \mathrm{C}$. But observe that point B cannot be located uniquely. Therefore, the given data is not sufficient for construction of $A B C$. \triangle

Now, try to construct $\triangle \mathrm{ABC}$ if $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}$ and $\angle \mathrm{B}=30^{\circ}$. What do we observe? Again, $\triangle \mathrm{ABC}$ cannot be constructed uniquely. Thus, we can conclude that a unique triangle can be constructed only if the lengths of its two sides and the measure of the included angle between them is given.

Exercise 10.3

1. Construct $\triangle \mathrm{DEF}$ such that $\mathrm{DE}=5 \mathrm{~cm}, \mathrm{DF}=3 \mathrm{~cm}$ and $\mathrm{m} \angle \mathrm{EDF}=90^{\circ}$.
2. Construct an isosceles triangle in which the lengths of each of its equal sides is 6.5 cm and the angle between them is 110°.
3. Construct $\triangle \mathrm{ABC}$ with $\mathrm{BC}=7.5 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}$ and $\mathrm{m} \angle \mathrm{C}=60^{\circ}$.

10.6 Constructing A Triangle When The Measures Of Two Of Its Angles And The Length Of The Side Included Between Them Is Given. (ASA Criterion)

As before, draw a rough sketch. Now, draw the given line segment. Make angles on the two ends. See the Example 3.

EXAMPLE 3

Construct $\triangle X Y Z$ if it is given that $X Y=6 \mathrm{~cm}$, $\mathrm{m} \angle \mathrm{ZXY}=300$ and $\mathrm{m} \angle \mathrm{XYZ} 100^{\circ}$.

Solution

Step 1 Before actual construction, we draw a rough sketch with measures marked on it. (This is just to get an idea as how to proceed) [Fig 10.6(i)].

Step 2 Draw XY of length 6 cm .
Step 3 At X, draw a ray XP making an angle of 30° with XY. By the given condition Z must be somewhere on the XP.

Step 4 At Y, draw a ray YQ making an angle of 100° with YX. By the given condition, Z must be on the ray YQ also.

Step 5 Z has to lie on both the rays XP and YQ. So, the point of intersection of the two rays is Z .
$\triangle X Y Z$ is now completed.

Fig 10.6 (i) - (v)

Do This

Now, draw another $\triangle \mathrm{LMN}$, where $\mathrm{m} \angle \mathrm{NLM} .=30^{\circ}, \mathrm{LM}=6 \mathrm{~cm}$ and $\mathrm{m} \angle \mathrm{NML}=.100^{\circ}$ Take a cutout of \triangle LMN and place it on the $\triangle X Y Z$. We observe that \triangle LMN exactly coincides with $\triangle X Y Z$. Thus, if two angles and the included side of one triangle are equal to the corresponding two angles and the included side of another triangle, then the two triangles are congruent. This is ASA congruency rule which you have learnt in the earlier chapter. (Note that the triangles have been constructed when two angles and the included side between these angles are given.)

Think, Discuss and Write

In the above example, length of a side and measures of two angles were given. Now study the following problem:

In $\triangle \mathrm{ABC}$, if $\mathrm{AC}=7 \mathrm{~cm}, \mathrm{~m} \angle \mathrm{~A}=600$ and $\mathrm{m} \angle \mathrm{B}=50^{\circ}$, can you draw the triangle? (Anglesum property of a triangle may help you!)

Exercise 10.4

1. Construct $\triangle \mathrm{ABC}$, given $\mathrm{m} \angle \mathrm{A}=60^{\circ}, \mathrm{m} \angle \mathrm{B} 30^{\circ}$ and $\mathrm{AB}=5.8 \mathrm{~cm}$.
2. Construct $\triangle \mathrm{PQR}$ if $\mathrm{PQ}=5 \mathrm{~cm}, \mathrm{~m} \angle \mathrm{PQR} 105^{\circ}$ and $\mathrm{m} \angle \mathrm{QRP}=40^{\circ}$.
(Hint: Recall angle-sum property of a triangle).
3. Examine whether you can construct $\triangle \mathrm{DEF}$ such that $\mathrm{EF}=7.2 \mathrm{~cm}, \mathrm{~m} \angle \mathrm{E}=110^{\circ}$ and $\mathrm{m} \angle$ $\mathrm{F}=80^{\circ}$. Justify your answer.

10.7 Constructing a Right-Angled Triangle When the Length of One Leg and Its

 Hypotenuse Are Given (RHS Criterion)Here it is easy to make the rough sketch. Now, draw a line as per the given side.
Make a right angle on one of its points. Use compasses to mark length of side and hypotenuse of the triangle. Complete
(Rough Sketch)

(i) the triangle. Consider the following:

Example 4

Construct $\triangle \mathrm{LMN}$, right-angled at M , given that $\mathrm{LN}=5 \mathrm{~cm}$ and $\mathrm{MN}=3 \mathrm{~cm}$.

SOLUTION

Step 1Draw a rough sketch and mark the measures.
Remember to mark the right angle [Fig 10.7(i)].
Step 2 Draw MN of length 3 cm .
[Fig 10.7 (ii)].
Step 3 At M, draw MX \perp MN. (L should be somewhere on this perpendicular) [Fig10.7 (iii)].

Step 4 With N as centre, draw an arc of radius 5 cm . (L must be on this arc, since it is at a distance of 5 cm from N) [Fig 10.7 (iv)].

Step 5 L has to be on the perpendicular line MX as well as on the arc drawn with centre N. Therefore, L is the meeting point of these two.
$\triangle \mathrm{LMN}$ is now obtained. [Fig 10.7 (v)]

(v)

Fig 10.7 (i)-(v)

Exercise 10.5

1. Construct the right angled $\triangle \mathrm{PQR}$, where $\mathrm{m} \angle \mathrm{Q}=90^{\circ}, \mathrm{QR}=8 \mathrm{~cm}$ and $\mathrm{PR}=10 \mathrm{~cm}$.
2. Construct a right-angled triangle whose hypotenuse is 6 cm long and one of the legs is 4 cm long.
3. Construct an isosceles right-angled triangle ABC , where $\mathrm{m} \angle \mathrm{ACB}=90^{\circ}$ and $\mathrm{AC}=6 \mathrm{~cm}$.

Miscellaneous questions

Below are given the measures of certain sides and angles of triangles. Identify those which cannot be constructed and, say why you cannot construct them. Construct rest of the triangles.

Triangle

1. $\triangle \mathrm{ABC}$
2. $\triangle \mathrm{PQR}$
3. $\triangle \mathrm{ABC}$
4. $\triangle \mathrm{LMN}$
5. $\triangle \mathrm{ABC}$
6. $\triangle \mathrm{PQR}$
7. $\triangle \mathrm{XYZ}$
8. $\triangle \mathrm{DEF}$
$\mathrm{m} \angle \mathrm{A}=85^{\circ}$;
$\mathrm{m} \angle \mathrm{B}=115^{\circ}$;
$\mathrm{AB}=5 \mathrm{~cm}$.
$\mathrm{m} \angle \mathrm{R}=60^{\circ}$;
$\mathrm{QR}=4.7 \mathrm{~cm}$.
$\mathrm{m} \angle \mathrm{B}=50^{\circ}$;
$\mathrm{AC}=3 \mathrm{~cm}$.
$\mathrm{m} \angle \mathrm{N}=120^{\circ}$;
$\mathrm{LM}=5 \mathrm{~cm}$.
$\mathrm{AB}=4 \mathrm{~cm} ;$
$\mathrm{AC}=2 \mathrm{~cm}$.
$\mathrm{QR}=4 \mathrm{~cm}$;
$\mathrm{YZ}=4 \mathrm{~cm}$;
$\mathrm{PR}=3.5 \mathrm{~cm}$.
$X Z=5 \mathrm{~cm}$.
$X Y=3 \mathrm{~cm} ;$
$\mathrm{EF}=5.5 \mathrm{~cm}$;
$\mathrm{DF}=4 \mathrm{~cm}$.

What Have We Discussed

In this Chapter, we looked into the methods of some ruler and compasses constructions.

1. Given a line l and a point not on it, we used the idea of equal alternate angles ${ }^{\text {s }}$ in a transversal diagram to draw a line parallel to l.

We could also have used the idea of equal corresponding angles‘ to do the construction.
2. We studied the method of drawing a triangle, using indirectly the concept of congruence of triangles.

The following cases were discussed:
(i) SSS: Given the three side lengths of a triangle.
(ii) SAS: Given the lengths of any two sides and the measure of the angle between these sides.
iii ASA: Given the measures of two angles and the length of side included between them.
(iv) RHS: Given the length of hypotenuse of a right-angled triangle and the length of one of its legs.

Perimeter and Area

11.1 Introduction

In Class VI, you have already learnt perimeters of plane figures and areas of squares and rectangles. Perimeter is the distance around a closed figure while area is the part of plane or region occupied by the closed figure.

In this class, you will learn about perimeters and areas of a few more plane figures.

11.2 Squares And Rectangles

Adil and Deeba made pictures. Adil made his picture on a rectangular sheet of length 60 cm and breadth 20 cm while Deeba made hers on a rectangular sheet of length 40 cm and breadth 35 cm . Both these pictures have to be separately framed and laminated. Who has to pay more for framing, if the cost of framing is Rs 3.00 per cm ?

If the cost of lamination is Rs 2.00 per cm^{2}, who has to pay more for lamination?
For finding the cost of framing, we need to find perimeter and then multiply it by the rate for framing. For finding the cost of lamination, we need to find area and then multiply it by the rate for lamination.

TRY THESE

What would you need to find, area or perimeter, to answer the following?

1. How much space does a blackboard occupy?

2 What is the length of a wire required to fence a rectangular flower bed?
3. What distance would you cover by taking two rounds of a triangular park?
4. How much plastic sheet do you need to cover a rectangular swimming pool?

Do you remember,
Perimeter of a regular polygon $=$ number of sides \times length of one side
Perimeter of a square $=4 \times$ side

Perimeter of a rectangle $=2 \times(l+b)$ Area of a rectangle $=l \times b$, Area of a square $=$ side \times side Safeena needed a square of side 4 cm for completing a collage. She had a rectangular sheet of length 28 cm and breadth 21 cm (Fig 11.1). She cuts off a square of side 4 cm from the rectangular sheet her friend saw the remaining sheet (Fig 11.2) and asked Safeena, Has the perimeter of the sheet increased or decreased now?"
Has the total length of side AD increased after cutting off the square?
Has the area increased or decreased?
Safeena cuts off one more square from the opposite side (Fig 11.3).

Will the perimeter of the remaining sheet increase further?
Will the area increase or decrease further?
So, what can we infer from this?
It is clear that the increase of perimeter need not lead to increase in area.

Fig 11.1

TRY THESE

1. Experiment with several such shapes and cut-outs. You might find it useful to draw these shapes on squared sheets and compute their areas and perimeters.
You have seen that increase in perimeter does not mean that area will also increase.
2. Give two examples where the area increases as the perimeter increases.
3. Give two examples where the area does not increase when perimeter increases.

Example 1

A door-frame of dimensions $3 \mathrm{~m} \times 2 \mathrm{~m}$ is fixed on the wall of dimension $10 \mathrm{~m} \times 10 \mathrm{~m}$. Find the total labour charges for painting the wall if the labour charges for painting $1 \mathrm{~m}^{2}$ of the wall is Rs 2.50 .

Solution

Painting of the wall has to be done excluding the area of the door.
Area of the door $=l \times b$

$$
=3 \times 2 \mathrm{~m}^{2}=6 \mathrm{~m}^{2}
$$

Fig 11. 4

Area of wall including door $=$ side \times side $=10 \mathrm{~m} \times 10 \mathrm{~m}=100 \mathrm{~m}^{2}$
Area of wall excluding door $=(100-6) \mathrm{m}^{2}=94 \mathrm{~m}^{2}$
Total labour charges for painting the wall = Rs $2.50 \times 94=$ Rs 235

Example 2

The area of a rectangular sheet is $500 \mathrm{~cm}^{2}$. If the length of the sheet is 25 cm , what is its width? Also find the perimeter of the rectangular sheet.

Solution

Area of the rectangular sheet $=500 \mathrm{~cm}^{2}$
Length $(l)=25 \mathrm{~cm}$
Area of the rectangle $l \times \mathrm{b}$ (where $b=$ width of the sheet)
Therefore, width $b=\frac{\text { Area }}{l}=\frac{500}{25}=20 \mathrm{~cm}$
Perimeter of sheet $=2 \times(l+b) 2 \times(25+20) \mathrm{cm}=90 \mathrm{~cm}$
So, the width of the rectangular sheet is 20 cm and its perimeter is 90 cm .

Example 3

Anushka wants to fence the garden in front of her house (Fig 11.5), on three sides with lengths $20 \mathrm{~m}, 12 \mathrm{~m}$ and 12 m . Find the cost of fencing at the rate of Rs 150 per metre.

Solution

The length of the fence required is the perimeter

of the garden (excluding one side) which is equal to $20 \mathrm{~m}+12 \mathrm{~m}+12 \mathrm{~m}$, i.e., 44 m . Cost of fencing Rs $150 \times 44=$ Rs 6,600 .

Example 4

A wire is in the shape of a square of side 10 cm . If the wire is rebent into a rectangle of length 12 cm , find its breadth. Which encloses more area, the square or the rectangle?

Solution

Side of the square $=10 \mathrm{~cm}$
Length of the wire $=$ Perimeter of the square $=4 \times$ side $=4 \times 10 \mathrm{~cm}=40 \mathrm{~cm}$
Length of the rectangle, $l=12 \mathrm{~cm}$. Let b be the breadth of the rectangle.
Perimeter of rectangle $=$ Length of wire $=40 \mathrm{~cm}$
Perimeter of the rectangle $=2(l+b)$
Thus, $40=2(12+b)$
or $=\frac{40}{2}=12+b$
Therefore, $b=20-12=8 \mathrm{~cm}$
The breadth of the rectangle is 8 cm .
Area of the square $=(\text { side })^{2}$
$=10 \mathrm{~cm} \times 10 \mathrm{~cm}=100 \mathrm{~cm}^{2}$
Area of the rectangle $=l \times b$
$=12 \mathrm{~cm} \times 8 \mathrm{~cm}=96 \mathrm{~cm}^{2}$
So, the square encloses more area even though its perimeter is the same as that of the rectangle.

Example 5

The area of a square and a rectangle are equal. If the side of the square is 40 cm and the breadth of the rectangle is 25 cm , find the length of the rectangle. Also, find the perimeter of the rectangle.

Solution

Area of square $=(\text { side })^{2}$
$=40 \mathrm{~cm} \times 40 \mathrm{~cm}=1600 \mathrm{~cm}^{2}$
It is given that,
The area of the rectangle $=$ The area of the square
Area of the rectangle $=1600 \mathrm{~cm}^{2}$, breadth of the rectangle $=25 \mathrm{~cm}$.
Area of the rectangle $=l \times b$
or $\quad 1600=1 \times 25$
or

$$
\frac{1600}{25}=l \quad \text { or } \quad l=64 \mathrm{~cm}
$$

So, the length of rectangle is 64 cm .
Perimeter of the rectangle $=2(l+b)=2(64+25) \mathrm{cm}$

$$
=2 \times 89 \mathrm{~cm}=178 \mathrm{~cm}
$$

So, the perimeter of the rectangle is 178 cm even though its area is the same as that of the square.

Exercise 11.1

1. The length and the breadth of a rectangular piece of land are 500 m and 300 m respectively. Find
(i) its area (ii) the cost of the land, if $1 \mathrm{~m}^{2}$ of the land costs Rs 10,000 .
2. Find the area of a square park whose perimeter is 320 m .
3. Find the breadth of a rectangular plot of land, if its area is $440 \mathrm{~m}^{2}$ and the length is 22 m . Also find its perimeter.
4. The perimeter of a rectangular sheet is 100 cm . If the length is 35 cm , find its breadth. Also find the area.
5. The area of a square park is the same as of a rectangular park. If the side of the square park is 60 m and the length of the rectangular park is 90 m , find the breadth of the rectangular park.
6. A wire is in the shape of a rectangle. Its length is 40 cm and breadth is 22 cm . If the same wire is rebent in the shape of a square, what will be the measure of each side. Also find which shape encloses more area?
7. The perimeter of a rectangle is 130 cm . If the breadth of the rectangle is 30 cm , find its length. Also find the area of the rectangle.
8. A door of length 2 m and breadth 1 m is fitted in a wall. The length of the wall is 4.5 m and the breadth is 3.6 m (Fig 11.6). Find the cost of white washing the wall, if the rate of white washing the wall is Rs 20 per m^{2}.

Fig 11.6

11.2.1 Triangles as Parts of Rectangles

Take a rectangle of sides 8 cm and 5 cm . Cut the rectangle along its diagonal to get two triangles (Fig 11.7).
Superpose one triangle on the other.
Are they exactly the same in size?
Can you say that both the triangles are equal in area?
Are the triangles congruent also?
What is the area of each of these triangles?
You will find that sum of the areas of the two triangles

Fig 11.7 the same as the area of the rectangle. Both the triangles are equal in area.
The area of each triangle $=\frac{1}{2}$ (Area of the triangle $)$

$$
\begin{aligned}
& =\frac{1}{2} \times b_{=}^{-}=\frac{1}{2} \times 5 \\
& =\frac{40}{2}=20 \mathrm{~cm}^{2}
\end{aligned}
$$

Take a square of side 5 cm and divide it into 4 triangles as shown (Fig 11.8).

Fig 11.8

Are the four triangles equal in area?
Are they congruent to each other? (Superpose the triangles to check).
What is the area of each triangle?
The area of each triangle $=\frac{1}{4}$ (Area of the square)

$$
=\frac{1}{4}\left\langle i d e^{2}=\frac{1}{4}<^{2} \mathrm{~cm}^{2}=6.25 \mathrm{~cm}^{2}\right.
$$

11.2.2 Generalising for other Congruent Parts of Rectangles

A rectangle of length 6 cm and breadth 4 cm is divided into two parts as shown in the Fig (11.9). Trace the rectangle on another paper and cut off the rectangle along EF to divide it into two parts.

Superpose one part on the other, see if they match. (You may have to rotate them).

Fig 11.9

Are they congruent? The two parts are congruent to each other. So, the area of one part is equal to the area of the other part.

Therefore, the area of each congruent part $=\frac{1}{2}$ (The area of the rectangle)

$$
=\frac{1}{2} \times \boldsymbol{\$} \times 4 \mathrm{sm}^{2}=12 \mathrm{~cm}^{2}
$$

11.3 AREA OF A PARALLELOGRAM

We come across many shapes other than squares and rectangles.
How will you find the area of a land which is a parallelogram in shape?
Let us find a method to get the area of a parallelogram.
Can a parallelogram be converted into a rectangle of equal area?
Draw a parallelogram on a graph paper as shown in Fig 11.10(i). Cut out the parallelogram. Draw a line from one vertex of the parallelogram perpendicular to the opposite side [Fig 11. $10(i i)]$. Cut out the triangle. Move the triangle to the other side of the parallelogram.

Fig 11.10

What shape do you get? You get a rectangle.
Is the area of the parallelogram equal to the area of the rectangle formed?
Yes, area of the parallelogram = area of the rectangle formed

What are the length and the breadth of the rectangle? We find that the length of the rectangle formed is equal to the base of the parallelogram and the breadth of the rectangle is equal to the height of the parallelogram (Fig 11.11).
Now, Area of parallelogram = Area of rectangle

$$
=\text { length } \times \text { breadth }=l \times b
$$

But the length l and breadth b of the rectangle are exactly the base b and the height h, respectively of the

Fig 11.11 parallelogram.
Thus, the area of parallelogram $=$ base \times height $=b \times h$.

Any side of a parallelogram can be chosen as base of the parallelogram. The perpendicular dropped on that side from the opposite vertex is known as height (altitude). In the parallelogram $\mathrm{ABCD}, \mathrm{DE}$ is perpendicular to AB . Here $A B$ is the base $D E$ is the height of the parallelogram.

In this parallelogram ABCD,
BF is the perpendicular to opposite side AD . Here AD is the base and BF is the height.

Consider the following parallelogram (Fig 11.12)

Fig 11.12
Find the areas of the parallelograms by counting the squares enclosed within the figures and also find the perimeters by measuring the sides.

Complete the following table:

Parallelogram	Base	Height	Area	Perimeter
(a)	5 units	3 units	$5 \times 3=15$ units	
(b)				
(c)				
(d)				
(e)				
(f)				
(g)				

You will find that all these parallelograms have equal areas but different perimeters. Now consider the following parallelograms with sides 7 cm and 5 cm ($\mathbf{F i g}$ 11.3).

Fig 11.13
Find the perimeter and area of each of these parallelograms. Analyse your results. You will find that these parallelograms have different areas but equal perimeters.

This shows that to find the area of a parallelogram, you need to know only the base and the corresponding height of the parallelogram.

A gardener wants to know the cost of covering the whole of a triangular garden with grass.

In this case we need to know the area of the triangular region.
Let us find a method to get the area of a triangle.
Draw a scalene triangle on a piece of paper. Cut out the triangle.
Place this triangle on another piece of paper and cut out another triangle of the same size.

So now you have two scalene triangles of the same size.
Are both the triangles congruent?
Superpose one triangle on the other so that they match. You may have to rotate one of the two triangles.

Now place both the triangles such that their corresponding sides are joined (as shown in Fig 11.14). Is the figure thus formed a parallelogram? Compare the area of each triangle to the area of the parallelogram.

Compare the base and height of the triangles with the base and height of the parallelogram.

You will find that the sum of the areas of both the triangles
 is equal to the area of the parallelogram. The base and the height of the triangle are the same as the base and the height of the parallelogram, respectively.
Area of each triangle $=\frac{1}{2}($ Area of parallelogram $)$

$$
\begin{aligned}
& =\frac{1}{2}(\text { base } \times \text { height })(\text { Since area of a parallelogram }=\text { base } \times \text { height }) \\
& =\frac{1}{2}(b \times h)\left(\text { or } \frac{1}{2} b h, \text { in short }\right)
\end{aligned}
$$

TRY THESE

1. Try the above activity with different types of triangles.

2, Take different parallelograms. Divide each of the parallelograms into two triangles by cutting along any of its diagonals. Are the triangles congruent?

In the figure (Fig 11.15) all the triangles are on the base $\mathrm{AB}=6 \mathrm{~cm}$. What can you say about the height of each of the triangles corresponding to the base AB ?

Can we say all the triangles are equal in area? Yes.

Are the triangles congruent also? No.
We conclude that all the congruent triangles are equal in area but the triangles equal in area need not be congruent.

Fig 11.15
Consider the obtuse-angled triangle ABC of base 6 cm (Fig 11.16).
Its height $A D$ which is perpendicular from the vertex A is outside the triangle.

Can you find the area of the triangle?

Example 6

One of the sides and the corresponding height of a parallelogram are 4 cm and 3 cm respectively. Find the area of the parallelogram (Fig 11.17).

Solution

Given that length of base $(b)=4 \mathrm{~cm}$, height $(h)=3 \mathrm{~cm}$
Area of the parallelogram $=b \times h$

$$
=4 \mathrm{~cm} \times 3 \mathrm{~cm}=12 \mathrm{~cm}^{2}
$$

Example 7
Find the height $\underline{\underline{x}}^{6}$ if the area of the parallelogram is $24 \mathrm{~cm}^{2}$

Fig 11.17 and the base is 4 cm .

Fig 11.18

Solution

Area of parallelogram $=\mathrm{b} \times \mathrm{h}$
Therefore, $24=4 \times x$ (Fig 11.18)
or $\frac{24}{4}=x \quad$ or $\quad x=6 \mathrm{~cm}$
So, the height of the parallelogram is 6 cm .

Example 8

The two sides of the parallelogram ABCD are 6 cm and 4 cm . The height corresponding to the base CD is 3 cm (Fig 11.19). Find the
(i) area of the parallelogram. (ii) the height corresponding to the base AD.

Solution

(i)

$$
\begin{aligned}
& \text { Area of parallelogram }=b \times h \\
& =6 \mathrm{~cm} \times 3 \mathrm{~cm}=18 \\
& \mathrm{~cm}^{2} \\
& \text { base }(b)=4 \mathrm{~cm} \text {, height }=x \\
& \text { Area }=18 \mathrm{~cm}^{2} \\
& \text { Area of parallelogram }=b \times x \\
& 18=4 \times x \\
& \frac{18}{4}=x \\
& \text { Therefore, } \quad x=4.5 \mathrm{~cm}
\end{aligned}
$$

Thus, the height corresponding to base AD is 4.5 cm .

Example 9

Find the area of the following triangles ($\mathbf{F i g} \mathbf{1 1 . 2 0}$).

Solution

(i) Area of triangle $=\frac{1}{2} b h=\frac{1}{2} \times \mathrm{QR} \times \mathrm{PS}$

$$
=\frac{1}{2} \times 4 \mathrm{~cm} \times 2 \mathrm{~cm}=4 \mathrm{~cm}^{2}
$$

(ii) Area of triangle $=\frac{1}{2} b h=\frac{1}{2} \times \mathrm{MN} \times \mathrm{LO}$

$$
=\frac{1}{2} \times 3 \mathrm{~cm} \times 2 \mathrm{~cm}=3 \mathrm{~cm}^{2}
$$

Example 10

Find BC , if the area of the triangle ABC is $36 \mathrm{~cm}^{2}$ and the height AD is 3 cm (Fig 11.21).

Solution

Height $=3 \mathrm{~cm}$, Area $=36 \mathrm{~cm}^{2}$
Area of the triangle $\mathrm{ABC}=\frac{1}{2} \mathrm{bh}$

Fig 11.21
or

$$
36=\frac{1}{2} \times b \times 3 \text { i.e., } \quad b=\frac{36 \times 2}{3}=24 \mathrm{~cm} .
$$

So,

$$
\mathrm{BC}=24 \mathrm{~cm} .
$$

Example 11

In $\triangle \mathrm{PQR}, \mathrm{PR}=8 \mathrm{~cm}, \mathrm{QR}=4 \mathrm{~cm}$ and $\mathrm{PL}=5 \mathrm{~cm}$ (Fig 11.22). Find:
(i) the area of the $\triangle \mathrm{PQR}$
(ii) QM

Solution

(i)

$$
\mathrm{QR}=\text { base }=4 \mathrm{~cm}, \mathrm{PL}=\text { height }=5 \mathrm{~cm}
$$

Area of the triangle $\mathrm{PQR}=\frac{1}{2} \mathrm{bh}$

$$
=\frac{1}{2} \times 4 \mathrm{~cm} \times 5 \mathrm{~cm}=10 \mathrm{~cm}^{2}
$$

$$
\text { (ii) } \quad \begin{array}{r}
\mathrm{PR}=\text { base }=8 \mathrm{~cm} \quad \mathrm{QM}=\text { height }=? \\
\text { Area of triangle }
\end{array}=\frac{1}{2} \times \mathrm{b} \times \mathrm{h} .
$$

$$
\text { Area }=10 \mathrm{~cm}^{2}
$$

$$
\text { Area of triangle }=\frac{1}{2} \times \mathrm{b} \times \mathrm{h} \quad \text { i.e., } 10=\frac{1}{2} \times 8 \times \mathrm{h}
$$

So, $\quad \mathrm{QM}=2.5 \mathrm{~cm}$

Exercise 11.2

1. Find the area of each of the following parallelograms:

(a)

(b)

(e)
2. Find the area of each of the following triangles:

(a)

(b)

(c)

(d)
3. Find the missing values:

S.NO	Base	Height	Area of Parallelogram
a.	20 cm		$246 \mathrm{~cm}^{2}$
b.		15 cm	$154.5 \mathrm{~cm}^{2}$
c.		8.4 cm	$48.72 \mathrm{~cm}^{2}$
d.	15.6 cm		$16.38 \mathrm{~cm}^{2}$

4. Find the missing value:

Base	Height	Area of Triangle
15 cm	------	$87 \mathrm{~cm}^{2}$
-----	31.4 mm	$1256 \mathrm{~mm}^{2}$
22 cm	------	$170.5 \mathrm{~m}^{2}$

5. PQRS is a parallelogram (Fig 11.23). QM is the height from Q to SR and QN is the height from Q to PS . If $\mathrm{SR}=12 \mathrm{~cm}$ and QM $=7.6 \mathrm{~cm}$. Find:
(a) the area of the parallelogram PQRS
(b) QN , if $\mathrm{PS}=8$
cm

Fig 11.23

Fig 11.24

8. $\triangle \mathrm{ABC}$ is isosceles with $\mathrm{AB}=\mathrm{AC}=7.5 \mathrm{~cm}$ and $\mathrm{BC}=9 \mathrm{~cm}$ (Fig 11.26). The height AD from A to $B C$, is 6 cm . Find the area of $A A B C$. What will be the height from C to $A B$ i.e., CE?

11.5 Circles

A racing track is semi-circular at both ends (Fig 11.27).

Can you find the distance covered by an athlete if he takes two rounds of a racing track? We need to find a method to find the distances around when a shape is circular.

Fig 11.27

11.5.1 Circumference of a Circle

Maria cut different cards, in curved shape from a cardboard. She wants to put lace around to decorate these cards. What length of the lace does she require for each? (Fig 11.28)

Fig 11.28
You cannot measure the curves with the help of a ruler as these figures are not -stright". What can you do?

Here is a way to find the length of lace required for shape in Fig 11.28(a). Mark a point on the edge of the card and place the card on the table. Mark the position of the point on the table also (Fig 11. 29)

Fig 11.30

Now roll the circular card on the table along a straight line till the marked point again touches the table.
Measure the distance along the line. This is the length of the lace required (Fig 11.30). It is also the distance along the edge of the card from the marked point back to the marked point.
You can also find the distance by putting a string on the edge of the circular object and taking all round it.
The distance around a circular region is known as its circumference.

Đo This

Take a bottle cap, a bangle or any other circular object and find the circumference. Now, can you find the distance covered by the athlete on the track by this method?
Still it will be very difficult to find the distance around the track or any other circular object by measuring through string. Moreover, the measurement will not be accurate.
So, we need some formula for this, as we have for rectilinear figures or shapes.
Let us see if there is any relationship between the diameter and the circumference of the circles.

Consider the following table: Draw six circles of different radii and find their circumference by using string. Also find the ratio of the circumference to the diameter.

Circle	Radius	Diameter	Circumference	Ratio of Circumference to Diameter
1.	3.5 cm	7.0 cm	22.0 cm	$\frac{22}{7}=3.14$
2.	7.0 cm	14.0 cm	44.0 cm	$\frac{44}{14}=3.14$
3.	10.5 cm	21.0 cm	66.0 cm	$\frac{66}{21}=3.14$
4.	21.0 cm	42.0 cm	132.0 cm	$\frac{132}{42}=3.14$
5.	5.0 cm	10.0 cm	32.0 cm	$\frac{32}{110}=3.2$
6.	15.0 cm	30.0 cm	94.0 cm	$\frac{94}{30}=3.13$

What do you infer from the above table? Is this ratio approximately the same? Yes.
Can you say that the circumference of a circle is always more than three times its diameter? Yes.
This ratio is a constant and is denoted by π (pi). Its approximate value is $\frac{22}{7}$ or 3.14 .
So we can that $\frac{C}{d}=\pi$, where $C^{\text {‘}}$ represents circumference of the circle and_d $\mathrm{d}^{\text {‘ its }}$ diameter.
or

$$
\mathrm{C}=\pi d
$$

We know that diameter (d) of a circle is twice the radius (r) i.e., $d=2 r$
So, $\quad \mathrm{C}=\pi d=\pi \times 2 r \quad$ or $\quad \mathrm{C}=2 \pi r$

TRY THESE

In Fig 11.31,
(a) Which square has the larger perimeter?
(b) Which is the larger, perimeter of the smaller square or the circumference of the circle?

Fig 11.31

Example 12

What is the circumference of a circle of diameter 10 cm (Take $\pi=3.14)$?

Solution

Diameter of the circle $(d)=10 \mathrm{~cm}$
Circumference of circle $=\pi d$

$$
=3.14 \times 10 \mathrm{~cm}=31.4 \mathrm{~cm}
$$

So, the circumference of the circle of diameter 10 cm is 31.4 cm .

Example 13

What is the circumference of a circular disc of radius 14 cm ?

$$
\left(\mathrm{Use} \pi=\frac{22}{7}\right)
$$

Solution

Radius of circular disc $(r)=14 \mathrm{~cm}$
Circumference of disc $=2 \pi r$

$$
=2 \times \frac{22}{7} \times 14 \mathrm{~cm}=88 \mathrm{~cm}
$$

So, the circumference of the circular disc is 88 cm .

Example 14

The radius of a circular pipe is 10 cm . What length of a tape is required to wrap once around the pipe ($\pi=3.14$)?

Solution

Radius of the pipe $(r)=10 \mathrm{~cm}$
Length of tape required is equal to the circumference of the pipe.
Circumference of the pipe $=2 \pi r$

$$
\begin{aligned}
& =2 \times 3.14 \times 10 \mathrm{~cm} \\
& =62.8 \mathrm{~cm}
\end{aligned}
$$

Therefore, length needed to wrap once around the pipe is 62.8 cm .

Example 15

Find the perimeter of the given shape (Fig 11.32) (Take $\pi=\frac{22}{7}$).

Solution

In this shape we need to find the circumference of semicircles on each side of the square. Do you need to find the perimeter of the square also? No. The outer boundary, of this figure is made up of semicircles. Diameter of each semicircle is 14 cm .
We know that:
Circumference of the circle $=\pi d$
Circumference of semicircle $=\frac{1}{2} \pi d$

Fig 11.32

Circumference of each of the semicircles is 22 cm
Therefore, perimeter of the given figure $=4 \times 22 \mathrm{~cm}=88 \mathrm{~cm}$

Example 16

Suhail divides a circular disc of radius 7 cm in two equal parts. What is the perimeter of each semicircular shape disc? (Use $\pi=\frac{22}{7}$)

Solution

To find the perimeter of the semicircular disc (Fig 11.33), we need to find

Fig 11.33

(i) Circumference of semicircular shape

(ii) Diameter

Given that radius $(r)=7 \mathrm{~cm}$. We know that the circumference of circle $=2 \pi r$
So, the circumference of the semicircle $=\frac{1}{2} 2 r=\pi r$

$$
=\frac{22}{7} 7 \mathrm{~cm}=22 \mathrm{~cm}
$$

So, the diameter of the circle $\quad=2 r=2 \times 7 \mathrm{~cm}=14 \mathrm{~cm}$
Thus, perimeter of each semicircle disc $=22 \mathrm{~cm}+14 \mathrm{~cm}=36 \mathrm{~cm}$

11.5.2 Area of Circle

Consider the following:

* A farmer dug a flower bed of radius 7 mat the centre of a field. He needs to purchase fertiliser. If 1 kg of fertiliser is required for 1 square metre area, how much fertiliser should he purchase?
* What will be the cost of polishing a circular table-top of radius 2 m at the rate of Rs 10 per square metre?

Can you tell what we need to find in such cases, Area or Perimeter? In such cases we need to find the area of the circular region. Let us find the area of a circle, using graph paper.

Draw a circle of radius 4 cm on a graph paper (Fig 11.34). Find the area by counting the number of squares enclosed.

Fig 11.34

As the edges are not straight, we get a rough estimate of the area of circle by this method. There is another way of finding the area of a circle.

Draw a circle and shade one half of the circle [Fig 11.35(i)]. Now fold the circle into eighths and cut along the folds [Fig $11.35(\mathrm{ii})$].

Fig 11.36

Fig 11.35

Arrange the separate pieces as shown, in Fig 11.36, which is roughly a parallelogram. The more sectors we have, the nearer we reach an appropriate parallelogram.

As done above if we divide the circle in 64 sectors, and arrange these sectors. It gives nearly a rectangle (Fig 11.37).

Fig 11.37
What is the breadth of this rectangle? The breadth of this rectangle is the radius of the circle, i.e., $\underline{\underline{r}}^{6}$.

As the whole circle is divided into 64 sectors and on each side we have 32 sectors, the length of the rectangle is the length of the 32 sectors; which is half of the circumference. (Fig 11.37)
Area of the circle $=$ Area of rectangle thus formed $=l \times b$
$=($ Half of circumference $) \times$ radius $=\left(\frac{1}{2} \times 2 \pi r\right) \times r=\pi r^{2}$
So the area of the circle $=\pi r^{2}$

TRY THESE

Draw circles of different radii on a graph paper. Find the area by counting the number of squares. Also find the area by using formula. Compare the two answers.

Example 17

Find the area of a circle of radius 30 cm (use $\pi=3.14$)

Solution

Radius, $r=30 \mathrm{~cm}$
Area of the circle $=\pi r^{2}=3.14 \times 302=2,826 \mathrm{~cm}^{2}$

Example 18

Diameter of a circular garden is 9.8 m . Find its area.

Solution

Diameter, $\mathrm{d}=9.8 \mathrm{~m}$. therefore, radius $\mathrm{r}=9.8 \div 2=4.9 \mathrm{~m}$
Area of the circle $=\pi r^{2}=\frac{22}{7} \times 4.9^{2} \mathrm{~m}^{2}=\frac{22}{7} \times 4.9 \times 4.9 \mathrm{~m}^{2}=75.46 \mathrm{~m}^{2}$

Example 19

The adjoining figure shows two circles with the same centre. The radius of the larger circle is 10 cm and the radius of the smaller circle is 4 cm .
Find:
(a) the area of the larger circle
(b) the area of the smaller circle
(c) the shaded area between the two circles. $(\pi=3.14)$

Solution

(a) Radius of the larger circle $=10 \mathrm{~cm}$

So, area of the larger circle $=\pi r^{2}$

$$
=3.14 \times 10 \times 10=314 \mathrm{~cm}^{2}
$$

(b) Radius of the smaller circle $=4 \mathrm{~cm}$

Area of the smaller circle $=\pi r^{2}$

$$
=3.14 \times 4 \times 4=50.24 \mathrm{~cm}^{2}
$$

(c) Area of the shaded region $=(314-50.24) \mathrm{cm}^{2}=263.76 \mathrm{~cm}^{2}$

Exercise 11.3

1. Find the circumference of the circles with the following radius: (Take $\pi=\frac{22}{7}$)
(a) 14 cm
(b) 28 mm
(c) 21 cm
2. Find the area of the following circles; given that:
(a) radius $=14 \mathrm{~mm}\left(\right.$ Take $\left.\pi=\frac{22}{7}\right)$
(b) diameter $=49 \mathrm{~m}$
(c) radius $=5 \mathrm{~cm}$
3. If the circumference of a circular sheet is 154 m , find its radius. Also find the area of the sheet. (Take $\pi=\frac{22}{7}$)
4. A gardener wants to fence a circular garden of diameter 21 m . Find the length of the rope he needs to purchase, if he makes 2 rounds of fence. Also find the costs of the rope, if it cost Rs 4 per meter. (Take $\pi=\frac{22}{7}$)
5. From a circular sheet of radius 4 cm , a circle of radius 3 cm is removed. Find the area of the remaining sheet. (Take $\pi=3.14$)
6. Saika wants to put a lace on the edge of a circular table cover of diameter 1.5 m . Find the length of the lace required and also find its cost if one meter of the lace costs Rs 15.
(Take $\pi=3.14$)
7. Find the perimeter of the adjoining figure, which is a semicircle including its diameter.
8. Find the cost of polishing a circular table-top of diameter 1.6 m , if the rate of polishing is Rs $15 / \mathrm{m}^{2}$.
 (Take $\pi=3.14$)
9. Ashraf took a wire of length 44 cm and bent it into the shape of a circle. Find the radius of that circle. Also find its area. If the same wire is bent into the shape of a square, what will be the length of each of its sides? Which figure encloses more area, the circle or the square? (Take $\pi=\frac{22}{7}$)
10. From a circular card sheet of radius 14 cm , two circles of radius 3.5 cm and a rectangle of length 3 cm and breadth 1 cm are removed. (as shown in the adjoining figure). Find the area of the remaining sheet. (Take $\pi=\frac{22}{7}$)

11. A circle of radius 2 cm is cut out from a square piece of an aluminium sheet of side 6 cm . What is the area of the left over aluminium sheet? (Take $\pi=3.14$)
12. The circumference of a circle is 31.4 cm . Find the radius and the area of the circle? (Take $\pi=3.14$)

13. A circular flower bed is surrounded by a path 4 m wide. The diameter of the flower bed is 66 m . What is the area of this path? (Take $\pi=3.14$)
14. A circular flower garden has an area of $314 \mathrm{~m}^{2}$. A sprinkler at the centre of the garden can cover an area that has a radius of 12 m . Will the sprinkler water the entire garden? (Take $\pi=3.14$)
15. Find the circumference of the inner and the outer circles, shown in the adjoining figure? $($ Take it $=3.14)$
16. How many times a wheel of radius 28 cm must rotate to go 352 m ? (Take $\pi=\frac{22}{7}$)
17. The minute hand of a circular clock is 15 cm long. How far does the tip of the minute hand move in 1 hour. (Take $\pi=3.14$)

We know that $1 \mathrm{~cm}=10 \mathrm{~mm}$. Can you tell $1 \mathrm{~cm}^{2}$ is equal to how many mm^{2} ? Let us explore similar questions and find how to convert units while measuring areas to another unit.

Draw a square of side 1 cm (Fig 11.38), on a graph sheet.
You find that this square of side 1 cm will be divided into 100 squares, each of side 1 mm .

Fig 11.38

Area of a square of side $1 \mathrm{~cm}=$ Area of 100 squares, of each side 1 mm .
Therefore,

$$
\begin{aligned}
1 \mathrm{~cm}^{2} & =100 \times 1 \mathrm{~mm}^{2} \\
1 \mathrm{~cm}^{2} & =100 \mathrm{~mm}^{2} \\
1 \mathrm{~m}^{2} & =1 \mathrm{~m} \times 1 \mathrm{~m} \\
& =100 \mathrm{~cm} \times 100 \mathrm{~cm}(\text { As } 1 \mathrm{~m}=100 \mathrm{~cm}) \\
& =1000 \mathrm{~cm}^{2}
\end{aligned}
$$

or
Similarly,

Now can you convert $1 \mathrm{~km}^{2}$ into m^{2} ?
In the metric system, areas of land are also measured in hectares [written fa" in short].
A square of side 100 m has an area of 1 hectare.
So, $\quad 1$ hectare $=100 \times 100 \mathrm{~m}^{2}=10,000 \mathrm{~m}^{2}$
When we convert a unit of area to a smaller unit, the resulting number of units will be bigger.
For examples,

$$
\begin{aligned}
1000 \mathrm{~cm}^{2} & =1000 \times 100 \mathrm{~mm}^{2} \\
& =100000 \mathrm{~mm}^{2}
\end{aligned}
$$

But when we convert a unit of area to a larger unit, the number of larger units will be smaller.
For example, $\quad 1000 \mathrm{~cm}^{2}=\frac{1000}{10000} \mathrm{~m}^{2}=0.1 \mathrm{~m}^{2}$

TRY THESE

Convert the following:
(i) $50 \mathrm{~cm}^{2}$ in mm^{2}
(ii) 2 ha in m^{2}
(iii) $10 \mathrm{~m}^{2}$ in cm^{2}
(iv) $1000 \mathrm{~cm}^{2}$ in m^{2}

11.7 Applications

You must have observed that quite often, in gardens or parks, some space is left all around in the form of path or in between as cross paths. A framed picture has some space left all around it.
We need to find the areas of such pathways or borders when we want to find the cost of making them.

Example 20

A rectangular park is 45 m long and 30 m wide. A path 2.5 m wide is constructed outside the park. Find the area of the path.

Solution

Let ABCD represent the rectangular park and the shaded region represent the path 2.5 m wide.
To find the area of the path, we need to find
(Area of rectangle PQRS - Area of rectangle ABCD).

We have,

$$
\begin{aligned}
& \mathrm{PQ}=(45+2.5+2.5) \mathrm{m}=50 \mathrm{~m} \\
& \mathrm{PS}=(30+2.5+2.5) \mathrm{m}=35 \mathrm{~m}
\end{aligned}
$$

Area of the rectangle $\mathrm{ABCD}=l \times b=45 \times 30 \mathrm{~mm}^{2}=1350 \mathrm{~m}^{2}$
Area of rectangle $\mathrm{PQRS}=l \times b=50 \times 35 \mathrm{~m}^{2}=1750 \mathrm{~m}^{2}$
Area of the path $=$ Area of the rectangle $\mathrm{PQRS}-$ Area of the rectangle ABCD $=(1750-1350) \mathrm{m}^{2}=400 \mathrm{~m}^{2}$

Example 21

A path 5 m wide runs along inside a square park of side 100 m . Find the area of the path. Also find the area of the path. Also find the cost of cementing it at the rate of Rs 250 per $10 \mathrm{~m}^{2}$.

Solution

Let ABCD be the square park of side 100 m . The shaded region represents the path 5 m wide.

$$
\begin{aligned}
\mathrm{PQ} & =100-(5+5)=90 \mathrm{~m} \\
\text { Area of square } \mathrm{ABCD} & =(\text { side })^{2}=(100)^{2} \mathrm{~m}^{2}=10000 \mathrm{~m}^{2} \\
\text { Area of square PQRS } & =(\text { side })^{2}=(90)^{2} \mathrm{~m}^{2}=8100 \mathrm{~m}^{2}
\end{aligned}
$$

Therefore, area of the path $=(10000-8100) \mathrm{m}^{2}=1900 \mathrm{~m}^{2}$
Cost of cementing $10 \mathrm{~m}^{2}=$ Rs 250
Therefore, cost of cementing $1 \mathrm{~m}^{2}=$ Rs $\frac{250}{10}$
So, cost of cementing $1900 \mathrm{~m}^{2}=$ Rs $\frac{250}{10} \times 1900=$ Rs 47,500

Example 22

Two crossroads, each of width 5 m , run at right angles through the centre of a rectangular park of length 70 m and breadth 45 m and parallel to its sides. Find the area of the roads. Also find the cost of constructing the roads at the rate of Rs 105 per m^{2}.

Solution

Area of the cross roads is the area of shaded portion. i.e., the area of the rectangle PQRS and the area of the rectangle EFGH. But while doing this, the area of the square KLMN is taken twice,
 which is to be subtracted.

Now,

$$
\begin{aligned}
& \mathrm{PQ}=5 \mathrm{~m} \text { and } \mathrm{PS}=45 \mathrm{~m} \\
& \mathrm{EH}=5 \mathrm{~m} \text { and } \mathrm{EF}=70 \mathrm{~m} \\
& \mathrm{KL}=5 \mathrm{~m} \text { and } \mathrm{KN}=5 \mathrm{~m}
\end{aligned}
$$

Area of the path $=$ Area of the rectangle PQRS area of the rectangle EFGH - Area of square KLMN

$$
\begin{aligned}
& =\mathrm{PS} \times \mathrm{PQ}+\mathrm{EF} \times \mathrm{EH}-\mathrm{KL} \times \mathrm{KN} \\
& =(45 \times 5+70 \times 5-5 \times 5) \mathrm{m}^{2} \\
& =(225+350-25) \mathrm{m}^{2}=550 \mathrm{~m}^{2}
\end{aligned}
$$

Cost of constructing path $=$ Rs $105 \times 550=$ Rs 57,750

Exercise 11.4

1. A garden is 90 m long and 75 m broad. A path 5 m wide is to be built outside and around it. Find the area of the path. Also find the area of the garden in hectare.
2. A 3 m wide path runs outside and around a rectangular park of length 125 m and breadth 65 m . Find the area of the path.
3. A picture is painted on a cardboard 8 cm long and 5 cm wide such that there is a margin of 1.5 cm along each of its sides. Find the total area of the margin.
4. A verandah of width 2.25 m is constructed all along outside a room which is 5.5 m long and 4 m wide. Find:
(i) the area of the verandah.
(ii) the cost of cementing the floor of the verandah at the rate of Rs 200 per m^{2}.
5. A path 1 m wide is built along the border and inside a square garden of side 30 m .

Find:
(i) the area of the path
(ii) the cost of planting grass in the remaining portion of the garden at the rate of Rs 40 per m^{2}.
6. Two cross roads, each of width 10 m , cut at right angles through the centre of a rectangular park of length 700 m and breadth 300 m and parallel to its sides. Find the area of the roads. Also find the area of the park excluding cross roads. Give the answer in hectares.
7. Through a rectangular field of length 90 m and breadth 60 m , two roads are constructed which are parallel to the sides and cut each other at right angles through the centre of the fields. If the width of each road is 3 m , find
(i) the area covered by the roads.
(ii) the cost of constructing the roads at the rate of Rs 110 per m^{2}.

8. Asma wrapped a cord around a circular pipe of radius 4 cm (adjoining figure) and cut off the length required of the cord. Then she wrapped it around a square box of side 4 cm (also shown). Did she have any cord left? $(\pi=3.14)$
9. The adjoining figure represents a rectangular lawn with a circular flower bed in the middle. Find:
(i) the area of the whole land
(ii) the area of the flower bed
(iii) the area of the lawn excluding the area of the flower bed
 (iv) the circumference of the flower bed.
10. In the following figures, find the area of the shaded portions:

(i)

(ii)
11. Find the area of the quadrilateral ABCD .

Here, $\mathrm{AC}=22 \mathrm{~cm}, \mathrm{BM}=3 \mathrm{~cm}$, $\mathrm{DN}=3 \mathrm{~cm}$, and
$\mathrm{BM} \perp \mathrm{AC}, \mathrm{DN} \perp \mathrm{AC}$

What Have We Discussed

1. Perimeter is the distance around a closed figure whereas area is the part of plane occupied by the closed figure.
2. We have learnt how to find perimeter and area of a square and rectangle in the earlier class. They are:
(a) Perimeter of a square $=4 \times$ side
(b) Perimeter of a rectangle $=2 \times$ (length + breadth $)$
(c) Area of a square $=$ side \times side
(d) Area of a rectangle $=$ length \times breadth
3. Area of a parallelogram $=$ base \times height
4. Area of a triangle $=\frac{1}{2} \times($ area of the parallelogram generated from it $)$

$$
=\frac{1}{2} \times \text { base } \times \text { height }
$$

5. The distance around a circular region is known as its circumference.

Circumference of a circle $=\pi d$, where d is the diameter of a circle and $\pi=\frac{22}{7}$ or 3.14 (approximately).
6. Area of a circle $=\pi r^{2}$, where r is the radius of the circle.
7. Based on the conversion of units for lengths, studied earlier, the units of areas can also be converted:
$1 \mathrm{~cm}^{2}=100 \mathrm{~mm}, \quad 1 \mathrm{~m}^{2}=10000 \mathrm{~cm}^{2}, \quad 1$ hectare $=10000 \mathrm{~m}^{2}$.

Chapter 12

12.1 Introduction

We have already come across simple algebraic expressions like $x+3, y-5,4 x+5$ and so on. In Class VI, we have seen how these expressions are useful in formulating puzzles and problems. We have also seen examples of several expressions in the chapter on simple equations.

Expressions are a central concept in algebra. This Chapter is devoted to algebraic expressions. When you have studied this Chapter, you will know how algebraic expressions are formed, how they can be combined, how we can find their values and how they can be used.

12.2 How Are Expressions Formed

We now know very well what a variable is. We use letters x, y, l, m, \ldots etc. to denote variables. A variable can take various values. Its value is not fixed. On the other hand, a constant has a fixed value. Examples of constants are: 4, 100, -17, etc.

We combine variables and constants to make algebraic expressions. For this, we use the operations of addition, subtraction, multiplication and division. We have already come across expressions like $4 x+5,10 y-20$. The expression $4 x+5$ is obtained from the variable x , first by multiplying x by the constant 4 and then adding the constant 5 to the product. Similarly, $10 y-20$ is obtained by first multiplying y by 10 and then subtracting 20 from the product. The above expressions were obtained by combining variables with constants. We can also obtain expressions by combining variables with themselves or with other variables.
Look at how the following expressions are obtained:

$$
x^{2}, 2 y^{2}, 3 x^{2}-5, x y, 4 x y+7
$$

(i) The expression x^{2} is obtained by multiplying the variable x by itself;

$$
x \times x=x^{2}
$$

Just as 4×4 is written as 42 , we write $x \times x=x^{2}$. It is commonly read as x squared.
(Later, when you study the chapter Exponents and Powers‘ you will realise that x^{2} may also be read as x raised to the power 2).

In the same manner, we can write $x \times x \times x^{2}$
Commonly, x^{3} is read as x cubed ${ }^{〔}$. Later, you will realise that x^{3} may also be read as x raised to the power 3 .
x, x^{2}, x^{3}, \ldots are all algebraic expressions obtained from x.
(ii) The expression $2 y^{2}$ is obtained from $y: 2 y^{2}=2 \times y \times y$

Here by multiplying y with y we obtain y^{2} and then we multiply y^{2} by the constant 2 .
(iii) In $\left(3 x^{2}-5\right)$ we first obtain x^{2}, and multiply it by 3 to get $3 x^{2}$.

From $3 x^{2}$, we subtract 5 to finally arrive at $3 x^{2}-5$.
(iv) In $x y$, we multiply the variable x with another variable y. Thus, $x \times y \times y$.
(v) In $4 x y+7$, we first obtain $x y$, multiply it by 4 to get $4 x y$ and add 7 to $4 x y$ to get the expression.

12.3 Terms Of An Expression

We shall now put in a systematic form what we have learnt above about how expressions are formed. For this purpose, we need to understand what terms of an expression and their factors are.
Consider the expression $(4 x+5)$. In forming this expression, we first formed $4 x$ separately as a product of 4 and x and then added 5 to it. Similarly consider the expression $\left(3 x^{2}+7 y\right)$. Here we first formed $3 x^{2}$ separately as a product of $3, x$ and x. We then formed $7 y$ separately as a product of 7 and y. Having formed $3 x^{2}$ and $7 y$ separately, we added them to get the expression.
You will find that the expressions we deal with can always be seen this way. They have parts which are formed separately and then added. Such parts of an expression which are formed separately first and then added are known as terms. Look at the expression $\left(4 x^{2}-3 x y\right)$. We say that it has two terms, $4 x^{2}$ and $-3 x y$. The term $4 x^{2}$ is a product of $4, x$ and x, and the term $(-3 x y)$ is a product of $(-3), x$ and y.
Terms are added to form expressions. Just as the terms $4 x$ and 5 are added to form the expression $(4 x+5)$, the terms $4 x^{2}$ and $(-3 y)$ are added to give the expression $\left(4 x^{2}-3 x y\right)$. This is because $4 x^{2}+(-3 x y)=4 x^{2}-3 x y$.

Note, the minus sign $(-)$ is included in the term. In the expression $4 x^{2}-3 x y$, we took the term as $(-3 x y)$ and not as ($3 x y$). That is why we do not need to say that terms are added or subtracted ${ }^{\text {‘ }}$ to form an expression; just _added‘ is enough.

Factors of a term

We saw above that expression $\left(4 x^{2}-3 x y\right)$ consists of two terms $4 x^{2}$ and $-3 x y$. The term $4 x^{2}$ is a product of $4, x$ and x are the factors of the term $4 x^{2}$. A term is a product of its factors. The term $-3 x y$ is a product of the factors $-3, x$ and y.

We can represent the terms and factors of the terms of an expression conveniently and elegantly by a tree diagram. The tree for the expression $\left(4 x^{2}-3 x y\right)$ is as shown in the adjacent figure.

Note, in the tree diagram, we have used dotted lines for factors and continuous lines for terms. This is to avoid mixing them.

Let us draw a tree diagram for the expression $5 x y+10$.
The factors are such that they cannot be further factorised. Thus we do not write $5 x y$ as $5 \times x y$, because $x y$ can be further factorised. Similarly, if x^{3} were a term, it would be written as $x \times x \times x$ and not $x^{2} \times x$. Also, remember that 1 is not taken as a separate factor.

Coefficients

We have learnt how to write a term as a product of factors. One of these factors may be numerical and the others algebraic (i.e., they contain variables). The numerical factor is said to be the numerical coefficient or simply the coefficient of the term. It is also said to be the coefficient of the rest of the term (which is obviously the product of algebraic factors of the term). Thus in $5 x y, 5$ is the coefficient of the term. It is also the coefficient of $x y$. In the term $10 x y z, 10$ is the coefficient of $x y z$, in the term $-7 x^{2} y^{2},-7$ is the coefficient of $x^{2} y^{2}$.

TRY THESE

1. What are the terms in the following expressions? Show how the terms are formed.
Draw a tree diagram:
$8 y+3 x 2,7 m n-4,2 x 2 y$.
2. Write three expression each having 4 terms

When the coefficient of a term is +1 , it is usually omitted. For example, $1 x$ is written as $x ; 1$ $x^{2} y^{2}$ is written as $x^{2} y^{2}$ and so on. Also, the coefficient (-1) is indicated only by the minus sign. Thus $(-1) x$ is written as $-x ;(-1) x^{2} y^{2}$ is written as $-x^{2} y^{2}$ and so on.

Sometimes, the word coefficient ${ }^{6}$ is used in a more general way. Thus we say that in the term $5 x y, 5$ is the coefficient of $x y, x$ is the coefficient of $5 y$ and y is the coefficient of $5 x$. In $10 x y^{2}, 10$ is the coefficient of $x y^{2}, x$ is the coefficient of $10 y^{2}$ and y^{2} is the coefficient of $10 x$. Thus, in this more general way, a coefficient maybe either a numerical factor or an algebraic factor or a product of two or more factors. It is said to be the coefficient of the product of the remaining factors.

Example 1

Identify, in the following expressions, terms which are not constant. Give their numerical coefficients:

$$
x y+4,13-y^{2}, 13-y+5 y^{2}, 4 p^{2} q-3 p q^{2}+5
$$

Solution

S.No.	Expression	Term (which is not a constant)	Numerical Coefficient
(i)	$x y+4$	$x y$	1
(ii)	$13-y^{2}$	$-y^{2}$	-1
(iii)	$13-y+5 y^{2}$	$-y$	-1
		$5 y^{2}$	5
(iv)	$4 p^{2} q-3 p q^{2}+5$	$4 p^{2} q$	4
		$-3 p q^{2}$	-3

Example 2

(a) What are the coefficients of x in the following expressions?

$$
4 x-3 y, 8-x+y, y^{2} x-y, 2 z-5 x z
$$

(b) What are the coefficients of y in the following expressions?

$$
4 x-3 y, 8+y z, y z^{2}+5, m y+m
$$

Solution

(a) In each expression we look for a term with x as a factor. The remaining part of that term is the coefficient of x.

S.No.	Expression	Term with Factor \boldsymbol{x}	Coefficient of \boldsymbol{x}
(i)	$4 x-3 y$	$4 x$	4
(ii)	$8-x+y$	$-x$	-1
(iii)	$y^{2} x-y$	$y^{2} x$	y^{2}
(iv)	$2 z-5 x z$	$-5 x z$	$-5 z$

(b) The method is similar to that in (a) above.

S.No.	Expression	Term with Factor \boldsymbol{y}	Coefficient of \boldsymbol{y}
(i)	$4 x-3 y$	$-3 y$	-3
(ii)	$8+y z$	yz	z
(iii)	$\mathrm{yz}^{2}+5$	$y z^{2}$	z^{2}
(iv)	$m y+m$	$m y$	m

12.4 Like And Unlike Terms

When terms have the same algebraic factors, they are like terms. When terms have different algebraic factors, they are unlike terms. For example, in the expression $2 x y-3 x+5 x y-4$, look at the terms $2 x y$ and $5 x y$. The factors of $2 x y$ are $2, x$ and y. The factors of $5 x y$ are $5, x$ and y. Thus their algebraic (i.e., those which contain variables) factors are the same and hence they are like terms. On the other hand the terms $2 x y$ and $-3 x$, have different algebraic factors. They are unlike terms. Similarly, the terms, $2 x y$ and 4 , are unlike terms. Also, the terms $-3 x$ and 4 are unlike terms.

12.5 Monomials, Binomials, Trinomials And Polynomials

An expression with only one term is called a monomial; for example, $7 x y,-5 \mathrm{~m}, 3 z^{2}, 4$ etc.
An expression which contains two unlike terms is called a binomial; for example, $x+y$, $m-5, m n+4 m, \mathrm{a}^{2}-b$ are binomials. The expression $10 p q$ is not a binomial; it is a monomial. The expression $(a+b+5)$ is not a binomial. It contains three terms.

An expression which contains three terms is called a trinomial; for example, the expressions $x+y+7, a b+a+b, 3 x^{2}-5 x+2, m+n+10$ are trinomials. The expression $a b+a+b+5$ is, however not a trinomial; it contains four terms and not three. The expression $x+y+5 x$ is not a trinomial as the terms x and $5 x$ are like terms.

In general, an expression with one or more terms is called a polynomial. Thus a monomial, a binomial and a trinomial are all polynomials.

Example 3

State with reasons, which of the following pairs of terms are of like terms and which are of unlike terms:
(i) $7 x, 12 y$
(ii) $15 x,-21 x$
(iii) $-4 a b, 7 b a$
(iv) $3 x y, 3 x$
(v) $6 x y^{2}, 9 x^{2} y$
(vi) $p q^{2},-4 p q^{2}$
(vii) $m n^{2}, 10 m n$

Solution

$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { S.No. } & \text { Pair } & \text { Factors } & \begin{array}{c}\text { Algebraic } \\ \text { factors same or } \\ \text { different }\end{array} & \begin{array}{c}\text { Like/ } \\ \text { Unlike } \\ \text { terms }\end{array} & \text { Remarks } \\ \hline \text { (i) } & \begin{array}{c}7 x \\ 12 y\end{array} & \left.\begin{array}{c}7, x \\ 12, y\end{array}\right\} & \text { Different } & \text { Unlike } & \begin{array}{c}\text { The variables in the terms } \\ \text { are different. }\end{array} \\ \hline \text { (ii) } & \begin{array}{c}15 x \\ -21 x\end{array} & \left.\begin{array}{c}15, x \\ -21, x\end{array}\right\} & \text { Same } & \text { Like } & \\ \hline \text { (iii) } & \begin{array}{c}-4 a b \\ 7 b a\end{array} & \left.\begin{array}{c}-4, a, b \\ 7, a, b\end{array}\right\} & \text { Same } & \text { Like } & \begin{array}{c}\text { Remember } \\ a b=b a\end{array} \\ \hline \text { (iv) } & \begin{array}{c}3 x y \\ 3 x\end{array} & \left.\begin{array}{c}3, x, y \\ 3, x\end{array}\right\} & \text { Different } & \text { Unlike } & \begin{array}{c}\text { The variable y is only in } \\ \text { one term }\end{array} \\ \hline \text { (v) } & \begin{array}{c}6 x y \\ 9 x^{2} y\end{array} & \begin{array}{c}6, x, y, y \\ 9, x, x, y\end{array}\end{array}\right\}$

Following simple steps will help you to decide whether the given terms are like or unlike terms:
(i) Ignore the numerical coefficients. Concentrate on the algebraic part of the terms.
(ii) Check the variables in the terms. They must be the same.
(iii) Next, check the powers of each variable in the terms. They must be the same.

Note that in deciding like terms, two things do not matter (1) the numerical coefficients of the terms and (2) the order in which the variables are multiplied in the terms.

Exercise 12.1

1. Get the algebraic expressions in the following cases using variables, constants and arithmetic operations.
(i) Subtraction of z from y.
(ii) One-half of the sum of numbers x and y.
(iii) The number z multiplied by itself.
(iv) One-fourth of the product of numbers p and q.
(v) Numbers x and y both squared and added.
(vi) Number 5 added to three times the product of number m and n.
(vii) Product of numbers y and z subtracted from 10 .
(viii) Sum of numbers a and b subtracted from their product.
(ix) Divide the sum of number $x+y$ by z.
(x) Subtract product of numbers $\mathrm{p}+\mathrm{q}$ from their sum
2. (i) Identify the terms and their factors in the following expressions

Show the terms and factors by tree diagrams.
(a) $x-3$
(b) $1+x+x^{2}$
(c) $y-y^{3}$
(d) $5 x^{2}+7 x^{2} y$
(e) $-a b+2 b^{2}-3 a^{2}$
(ii) Identify terms and factors in the expressions given below:
(a) $-4 x+5$
(b) $-4 x+5 y$
(c) $5 y+3 y^{2}$
(d) $x y+2 x^{2} y^{2}$
(e) $p q+q$
(f) $1.2 a b-2.4 b+3.6 a$
(g) $\frac{3}{4} x+\frac{1}{4}$
(h) $0.1 p^{2}+0.2 q^{2}$
3. Identify the numerical coefficients of terms (other than constants) in the following expressions:
(i) $5-3 t^{2}$
(ii) $1+t+t^{2}+t^{3}$
(iii) $x+2 x y+3 y$
(iv) $100 m+1000 n$
(v) $-p^{2} q^{2}+7 p q$
(vi) $1.2 a+0.8 b$
(vii) $3.14 r^{2}$
(viii) $2(l+b)$
(ix) $0.1 y+0.01 y^{2}$
(b) Identify terms which contain y 2 and give the coefficient of y 2 .
(i) $8-x y^{2}$
(ii) $5 y^{2}+7 x$
(iii) $2 x^{2} y-15 x y^{2}+7 y^{2}$
5. Classify into monomials, binomials and trinomials.
(i) $4 y-7 z$
(ii) y^{2}
(iii) $x+y-x y$
(iv) 100
(v) $a b-a-b$
(vi) $5-3 t$
(vii) $4 p^{2} q-4 p q^{2}$
(vii) $7 m n$
(ix) $z^{2}-3 z+8$
(x) $a^{2}+b^{2}$
(xi) $z^{2}+z$
(xii) $1+x+x^{2}$
(xii) $3-4 x+7 x y^{2}$
(xiv) $\frac{5}{7}$
(xv) $-50 x^{7}$
6. State whether a given pair of terms is of like or unlike terms.
(i) 1,100
(ii) $-7 x, \frac{5}{2} x$
(iii) $-29 x,-29 y$
(iv) $14 x y, 42 y x$
(v) $4 m^{2} \mathrm{p}, 4 m p^{2}$
(vi) $12 x z, 12 x^{2} z^{2}$
(vii) $5 x y,-4 x y$
(viii) $\frac{3}{7} x y^{2}, \frac{7}{3} x^{2} y$
(ix) $3 x, 7 y$
(x) $-4 x,-19 x$
7. Identify like terms in the following:
(a) $-x y^{2},-4 y x^{2}, 8 x^{2}, 2 x y^{2}, 7 y,-11 x^{2},-100 x,-11 y x, 20 x^{2} y$, $-6 x^{2}, y, 2 x y, 3 x$
(b) $10 p q, 7 p, 8 q,-p^{2} q^{2},-7 q p,-100 q,-23,12 q^{2} p^{2},-5 p^{2}, 41,2405 p, 78 q p$, $13 p^{2} q, q p^{2}, 701 p^{2}$

12.6 Addition And Subtraction of Algebraic Expressions

Consider the following problems:

1. Saika has some marbles. Ambreen has 10 more. Babloo says that he has 3 more marbles than the number of marbles Saika and Ambreen together have. How do you get the number of marbles that Babloo has?

Since it is not given how many marbles Saika has, we shall take it to be x. Ambreen then has 10 more, i.e., $x+10$. Babloo says that he has 3 more marbles than what Saika and Ambreen have together. So we take the sum of the numbers of Saika's marbles and Ambreen's marbles, and to this sum add 3 , that is we take the sum of $x, x+10$ and 3
2. Aslam's father's present age is 3 times Aslam's age. Aslam's grandfather's age is 13 years more than the sum of Aslam's age and Aslam's father's age. How do you find Aslam's grandfather's age?

Since Aslam's age is not given, let us take it to be y years. Then his father's age is $3 y$ years. To find Aslam's grandfather's age we have to take the sum of Aslam's age (y) and his father's age (3y) and to the sum add 13 , that is, we have to take the sum of $y, 3 y$ and 13 .
3. In a garden, roses and marigolds are planted in square plots. The length of the square plot in which marigolds are planted is 3 metres greater than the length of the square plot in which roses are planted. How much bigger in area is the marigold plot than the rose plot?

Let us take l metres to be length of the side of the rose plot. The length of the side of the marigold plot will be $(l+3)$ metres. Their respective areas will be l^{2} and $(l+3)^{2}$. The difference between $\left(l^{2}+3\right)^{2}$ and l^{2} will decide how much bigger in area the marigold plot is.

In all the three situations, we had to carry out addition or subtraction of algebraic expressions. There are a number of real life problems in which we need to use expressions
and do arithmetic operations on them. In this section, we shall see how algebraic expressions are added and subtracted.

TRY THESE

Think of atleast two situations in each of which of which you need to form two algebraic expressions and add or subtract them.

Adding and subtracting like terms

The simplest expressions are monomials. They consist of only one term. To begin with we shall learn how to add or subtract like terms.

Let us add $3 x$ and $4 x$. We know x is a number and so also are $3 x$ and $4 x$.

* Now, $3 x+4 x=(3 \times x)+(4 \times x)$

$$
=(3+4) \times x \text { (using distributive law })
$$

$$
=7 \times x=7 x \quad \text { Since variables are numbers, we }
$$

or $\quad 3 x+4 x=7 x$ can use distributive law for them.

* Let us next add $8 x y, 4 x y$ and $2 x y$

$$
\begin{aligned}
8 x y+4 x y+2 x y & =(8 \times x y)+(4 \times x y)+(2 \times x y) \\
& =(8+4+2) \times x y \\
& =14 \times x y=14 x y
\end{aligned}
$$

or $\quad 8 x y+4 x y+2 x y=14 x y$

* Let us subtract 4 n from 7 n

$$
\begin{aligned}
7 n-4 n & =(7 \times n)-(4 \times n) \\
& =(7-4) \times n=3 \times n=3 n
\end{aligned}
$$

or $\quad 7 n-4 n=3 n$

* In the same way, subtract $5 a b$ from 11ab.

$$
11 a b-5 a b=(11-5) a b=6 a b
$$

Thus, the sum of two or more like terms is a like term with a numerical coefficient equal to the sum of the numerical coefficients of all the like terms.

Similarly, the difference between two like term with a numerical coefficient equal to the difference between the numerical coefficients of the two like terms.

Note, unlike terms cannot be added or subtracted the way like terms are added or subtracted. We have already seen examples of this, when 5 is added to x, we write the result as $(x+5)$. Observe that in $(x+5)$ both the terms 5 and x are retained.

Similarly, if we add the unlike terms $3 x y$ and 7 , the sum is $3 x y+7$.
If we subtract 7 from $3 x y$, the result is $3 x y-7$.

Adding and subtracting general algebraic expressions

Let us take some examples:

* Add $3 x+11$ and $7 x-5$

The sum $=3 x+11+7 x-5$
Now, we know that the terms $3 x$ and $7 x$ are like terms and so also are 11 and -5 .
Further $3 x+7 x=10 x$ and $11+(-5)=6$. We can, therefore, simplify the sum as:
The sum $=3 x+11+7 x-5$

$$
\begin{aligned}
& =3 x+7 x+11-5 \quad \text { (rearranging terms) } \\
& =10 x+6
\end{aligned}
$$

Hence, $3 x+11+7 x-5=10 \mathrm{x}+6$

- Add, $3 x+11+8 z+7 x-5$.

The sum $=3 x+11+8 z+7 x-5$

$$
=3 x+7 x+11-5+8 z \quad \text { (rearranging terms) }
$$

Note we have put like terms together; the single unlike term $8 z$ will remain as it is.
Therefore, the sum $=10 x+6+8 z$

* Subtract $a-b$ from $3 a-b+4$

The difference $=3 a-b+4-(a-b)$

$$
=3 a-b+4-a+b
$$

Observe how we took $(a-b)$ in the brackets and took care of signs in opening bracket. Rearranging the terms to put like terms together,

The difference $=3 a-\mathrm{a}+b-b+4$

Note, just as

$-(5-3)=-5+3$. $-(a-b)=-a+b$.
The signs of algebraic terms are handled in the same way as signs of numbers.

$$
=(3-1) a+(1-1) b+4
$$

The difference $=2 a+(0) b+4=2 a+4$
or $3 a-b+4-(a-b)=2 a+4$
We shall now solve some more examples on addition and subtraction of expression for practice.

Example 4

Collect like terms and simplify the expression:

$$
12 m^{2}-9 m+5 m-4 m^{2}-7 m+10
$$

Solution

Rearranging terms, we have

$$
\begin{aligned}
12 m^{2}- & 4 m^{2}+5 m-9 m-7 m+10 \\
& =(12-4) m^{2}+(5-9-7) m+10 \\
& =8 m^{2}+(-4-7) m+10 \\
& =8 m^{2}+(-11) m+10 \\
& =8 m^{2}-11 m+10
\end{aligned}
$$

Example 5

Subtract $24 a b-10 b-18 a$ from $30 a b+12 b+14 a$.

Solution

$$
\begin{aligned}
30 a b+ & 12 b+14 a-(24 a b-10 b-18 a) \\
& =30 a b+12 b+14 a-24 a b+10 b+18 a \\
& =30 a b-24 a b+12 b+10 b+14 a+18 a \\
& =6 a b+22 b+32 a
\end{aligned}
$$

Alternatively, we write the expression one below the other with the like terms appearing exactly below like terms as:

$30 a b+12 b+14 a$
$24 a b-10 b-18 a$
$+\quad+$
$6 a b+22 b+32 a$

Note, subtracting a term is the same as adding its inverse. Subtracting - $10 b$ is the same as adding + $10 b$; Subtracting $-18 a$ is the same as adding $18 a$ and subtracting $24 a b$ is the same as $-24 a b$. The signs shown below the expression to be subtracting are a help in carrying out the subtraction properly.

Example 6

From the sum $2 y^{2}+3 y z,-y^{2}-y z-z^{2}$ and $y z+2 z^{2}$, subtract the $\operatorname{sum} 3 y^{2}-z^{2}$ and $-y^{2}+y z+z^{2}$.

Solution

We first add $2 y^{2}+3 y z,-y^{2}-y z-z^{2}$ and $y z+2 z^{2}$.

$$
\begin{gather*}
2 y^{2}+3 y z \\
-y^{2}-y z-z^{2} \\
+y z+2 z^{2} \tag{1}\\
\hline y^{2}+3 y z+z^{2} \\
\hline
\end{gather*}
$$

We then add $3 y^{2}-z^{2}$ and $-y^{2}+y z+z^{2}$

$$
\begin{gather*}
3 y^{2} \\
-y^{2}+y z+z^{2} \tag{2}\\
\hline 2 y^{2}+y z
\end{gather*}
$$

Now we subtract (2) from (1)

$$
\begin{gathered}
y^{2}+3 y z+z^{2} \\
2 y^{2}+y z \\
\hline-y^{2}+y z+z^{2} \\
\hline
\end{gathered}
$$

Exercise 12.2

1. Simplify combining like terms
(i) $21 b-32+7 b-20 b$
(ii) $-z^{2}+13 z^{2}-5 z+7 z^{3}-15 z$
(iii) $p-(p-q)-q-(q-p)$
(iv) $3 a-2 b-a b-(a-b+a b)+3 a b+b-a$
(v) $5 x^{2} y-5 x^{2}+3 y x^{2}-3 y^{2}+x^{2}-y^{2}+8 x y^{2}-3 y^{2}$
(vi) $\left(3 y^{2}+5 y-4\right)-\left(8 y-y^{2}-4\right)$
(vii) $\left(x^{2} y-4 x y+7 y^{2}\right)\left(-3 x^{2} y+4 x y-7 y\right)$
2. Add:
(i) $3 m n,-5 m n, 8 m n,-4 m n$
(ii) $t-8 t z, 3 t z-z, z-t$
(iii) $-7 m n+5,12 m n+2,9 m n-8,-2 m n-3$
(iv) $a+b-3, b-a+3, a-b+3$
(v) $14 x+10 y-12 x y-13,18-7 x-10 y+8 x y, 4 x y$
(vi) $5 m-7 n, 3 n-4 m+2,2 m-3 m n-5$
(vii) $4 x^{2} y,-3 x y^{2},-5 x y^{2}, 5 x^{2} y$
(viii) $3 p^{2} q^{2}-4 p q+5,-10 p^{2} q^{2}, 15+9 p q+7 p^{2} q^{2}$
(ix) $a b-4 a, 4 b-a b, 4 a-4 b$
(x) $x^{2}-y^{2}-1, y^{2}-1-x^{2}, 1-x^{2}-y^{2}$
(xi) $4 x y^{2}+5 x^{2} y+3,3-x y^{2}-x^{2} y$

3. Subtract

(i) $-5 y^{2}$ from y^{2}
(ii) $6 x y$ from $-12 x y$
(iii) $(a-b)$ from $(a+b)$
(iv) $a(b-5)$ from $b(5-a)$
(v) $-m^{2}+5 m n$ from $4 m^{2}-3 m n+8$
(vi) $-x^{2}+10 x-5$ from $3 a b-2 a^{2}-2 b^{2}$
(vii) $5 a^{2}-7 a b+5 b^{2}$ from $3 a b-2 a^{2}-2 b^{2}$
(viii) $4 p q-5 q^{2}-3 p^{2}$ from $5 p^{2}+3 q^{2}-p q$
(ix) $3 p^{2}+4 p q-5 q^{q}$ from $4 p q-5 q^{2}+3 p^{2}$
4. (a) What should be added to $x^{2}+x y+y^{2}$ to obtain $2 x^{2}+3 x y$?
(b) What should be subtracted from $2 a+8 b+10$ to get $-3 a+7 b+16$?
5. What should be taken away from $3 x^{2}-4 y^{2}+5 x y+20$ to obtain $-x^{2}-y^{2}+6 x y+20$?
6. (a) From the sum of $3 x-y+11$ and $-y-11$, subtract $3 x-y-11$.
(b) From the sum of $4+3 x$ and $5-4 x+2 x^{2}$, subtract the sum of $3 x^{2}-5 x$ and $-x^{2}+2 x+5$.
7. Subtract
$3 x-4 y+7$ from the sum of terms $4 x+14 x y+8 \quad \& 3 x y-7 x+5 y$
from the sum of terms $4 x+14 x y+8 \& 3 x y-7 x+5 y$

12.7 Finding The Value of an Expression

We know that the value of an algebraic expression depends on the values of the variables forming the expression. There are a number of situations in which we need to find the value of an expression, such as when we wish to check whether a particular value of a variable satisfies a given equation or not.

We find values of expressions, also, when we use formulas from geometry and from everyday mathematics. For example, the area of a square is l^{2}, where l is the length of a side of the square. If $l=5 \mathrm{~cm}$., the area is $5^{2} \mathrm{~cm}^{2}$ or $25 \mathrm{~cm}^{2}$; if the side is 10 cm , the area is 10^{2} cm^{2} or $100 \mathrm{~cm}^{2}$ and so on. We shall see more such examples in the next section.

Example 7

Find the values of the following expressions for $x=2$.
(i) $x+4$
(ii) $4 x-3$
(iii) $19-5 x^{2}$
(iv) $100-10 x^{3}$

Solution

Putting $x=2$
(i) $\operatorname{In} x+4$, we get the value of $x+4$, i.e.,

$$
x+4=2+4=6
$$

(ii) In $4 x-3$, we get

$$
4 x-3=(4 \times 2)-3=8-3=5
$$

(iii) In $19-5 x^{2}$, we get

$$
19-5 x^{2}=19-\left(5 \times 2^{2}\right)=19-(5 \times 4)=19-20=-1
$$

(iv) In $100-10 x^{3}$, we get

$$
\begin{aligned}
& 100-10 x^{3}=100-\left(10 \times 2^{3}\right)=100-(10 \times 8)\left(\text { Note } 2^{3}=8\right) \\
& =100-80=20
\end{aligned}
$$

Example 8

Find the value of the following expressions when $n=-2$.
(i) $5 n-2$
(ii) $5 n^{2}+5 n-2$
(iii) $n^{3}+5 n^{2}+5 n-2$

Solution

(i) Putting the value $n=-2$, in $5 \mathrm{n}-2$, we get,

$$
5(-2)-2=-10-2=-12
$$

(ii) In $5 n^{2}+5 n-2$, we get,

$$
\begin{aligned}
& \text { for } n-2,5 n-2=-12 \\
& \text { and } \left.5 n^{2}=5 \times(-2)^{2}=5 \times 4=20 \quad\left[\text { as }<2^{*}\right)=4\right]
\end{aligned}
$$

(iii) Now, for $n=-2$,

$$
\begin{aligned}
& 5 n^{2}+5 n-2=8 \text { and } \\
& n^{3}=(-2)^{3}=(-2) \times(-2) \times(-2)=-8
\end{aligned}
$$

Combining,

$$
n^{3}+5 n^{2}+5 n-2=-8+8=0
$$

We shall now consider expressions of two variables, for example, $x+y, x y$. To work out the numerical value of an expression of two variables, we need to give the values of both variables. For example, the value of $(x+y)$, for $x=3$ and $y=5$, is $3+5=8$.

Example 9

Find the value of the following expressions for $a=3, b=2$.
(i) $a+b$
(ii) $7 a-4 b$
(iii) $a^{2}+2 a b+b^{2}$
(iv) $a^{3}-b^{3}$

Solution

Substituting $\mathrm{a}=3$ and $\mathrm{b}=2$ in
(i) $a+b$, we get

$$
a+b=3+2=5
$$

(ii) $7 a-4 b$, we get

$$
7 a-4 b=7 \times 3-4 \times 2=21-8=13 .
$$

(iii) $a^{2}+2 a b+b^{2}$, we get

$$
a^{2}+2 a b+b^{2}=3^{2}+2 \times 3 \times 2+2^{2}=9+2 \times 6+4=9+12+4=25
$$

(iv) $a^{3}-b^{3}$, we get

$$
a^{3}-b^{3}=3^{3}-2^{3}=3 \times 3 \times 3-2 \times 2 \times 2=9 \times 3-4 \times 2=27-8=19
$$

Exercise 12.3

1. If $m=2$, find the value of:
(i) $m-2$
(ii) $3 m-5$
(iii) $9-5 m$
(iv) $3 m^{2}-2 m-7$
(v) $\frac{5 m}{2}-4$
2. If $p=-2$, find the value of:
(i) $4 p+7$
(ii) $-3 p^{2}+4 p+7$
(iii) $-2 p^{3}-3 p^{2}+4 p+7$
(iv) $3 p^{3}+2 p^{2}-15 p-2$
(v) $-2 p^{3}+3 p^{2}+13 p-2$
3. Find the value of the following expressions, when $x=-1$:
(i) $2 x-7$
(ii) $-x+2$
(iii) $x^{2}+2 x+1$
(iv) $a^{3}-b^{3}$
(v) $a^{2}-a b+b^{2}$
4. If $a=2, b=-2$, find the value of:
(i) $a^{2}+b^{2}$
(ii) $a^{2}+a b+b^{2}$
(iii) $a^{2}-b^{2}$
5. When $a=0, b=-1$, find the value of given expressions:
(i) $2 a+2 b$
(ii) $2 a^{2}+b^{2}+1$
(iii) $2 a^{2} b+2 a b^{2}+a b$
(iv) $a^{2}+a b+2$
(v) $3 x-4 a+7 b-1$
6. Simplify the expressions and find the value if x is equal to 2
(i) $x+7+4(x-5)$
(ii) $3(x+2)+5 x-7$
(iii) $6 x+5(x-2)$
(iv) $4(2 x-1)+3 x+11$
7. Simplify these expressions and find their values if $x=3, a=-1, b=-2$.
(i) $3 x-5-x+9$
(ii) $2-8 x+4 x+4$
(iii) $3 a+5-8 a+1$
(iv) $10-3 b-4-5 b$
(v) $2 a-2 b-4-5+a$
8. (i) If $z=10$, find the value of $z^{3}-3(z-10)$.
(ii) If $p=-10$, find the value of $p^{2}-2 p-100$
9. What should be the value of a if the value of $2 x^{2}+x-a$ equals to 5 , when $x=0$?
10. Simplify the expression and find its value when $a=5$ and $b=-3$.

$$
2\left(a^{2}+a b\right)+3-a b
$$

11. Find x if $3 a^{2}-7 x+5 a+2$ equals to -5 when $a=0$.

12.8 Using Algebraic Expressions - Formulas And Rules

We have seen earlier also that formulas and rules in mathematics can be written in a concise and general form using algebraic expressions. We see below several examples.

* Perimeter formulas

1. The perimeter of an equilateral triangle $=3 \times$ the length of its side. If we denote the length of the side of the equilateral triangle by l, then the perimeter of the equilateral triangle $=3 l$
2. Similarly, the perimeter of a square $=4 l$ where $l=$ the length of the side of the square.
3. Perimeter of a regular pentagon $=5 l$ where $l=$ the length of the side of the pentagon and so on.

* Area formulas

1. If we denote the length of a square by l, then the area of the square $=l^{2}$
2. If we denote the length of a rectangle by l and its breadth by b, then the area of the rectangle $=l \times b=l b$.
3. Similarly, if b stands for the base and h for the height of a triangle, then the area of the

Triangle $=\frac{b \times h}{2}=\frac{b h}{2}$.

Once a formula, that is, the algebraic expression for a given quantity is known, the value of the quantity can be computed as required.

For example, for a square of length 3 cm , the perimeter is obtained by putting the value $l=3$ cm in the expression of the perimeter of a square, i.e., $4 l$.

The perimeter of the given square $=(4 \times 3) \mathrm{cm}=12 \mathrm{~cm}$.
Similarly, the area of the square is obtained by putting in the value of $l(=3 \mathrm{~cm})$ in the expression for the area of a square, that is, l^{2};

Area of the given square $=(3)^{2} \mathrm{~cm}^{2}=9 \mathrm{~cm}^{2}$.

* Rules for number patterns

Study the following statements: -

1. If a natural number is denoted by n, its successor is $(n+1)$. We can check this for any natural number. For example, if $n=10$, its successor is $n+1=11$, which is known.
2. If a natural number is denoted by $\mathrm{n}, 2 n$ is an even number and $(2 n+1)$ an odd number. Let us check it for any number and $2 n+1=2 \times 15+1=30+1=31$ is indeed an odd number.

Do This

Take (small) line segments of equal length such as matchsticks, tooth pricks or pieces of straws cut into smaller pieces of equal length. Join them in patterns as shown in the figures given:

1. Observe the pattern in Fig 12.1. It consists of repetitions of the shape made from 4 line segments. As you see for one shape you need 4 segments, for two shapes 7, for three 10 and so on. If n is the number of shapes, then the number of segments required to form n shapes is given by $(3 n+1)$.
You may verify this by taking $n=1,2$, $3,4, \ldots 10, \ldots$ etc. For example, if the number of letters formed is 3 , then the number of line segments required is $3 \times 3+1=9+1=10$, as seen from the figure.
2. Now, consider the pattern in Fig 122. Here the $U_{\text {shape is repeated. The number }}$ of segments required to form $1,2,3,4$, shapes are $35,7,9, \ldots$ respectively. If n stands for the shapes formed, the number of segments required is given by the expression $(2 n+1)$. You may cheek if the expression is correct by taking any value of n, say $\mathrm{n}=4$. Then $(2 \mathrm{n}+1)=(2 \times 4)+1=9$, which is indeed the number of line segments

Fig 12.1

Fig 12.2 required to make $4 \bigcup_{\text {S }}$.

* Some more number patterns

Let us now look at another pattern of numbers, this time without any drawing to help us

$$
3,6,9,12, \ldots, 3 n, \ldots
$$

The numbers are such that they are multiples of 3 arranged in an increasing order, beginning with 3 . The term which occurs at $n^{\text {th }}$ position is given by the expression $3 n$. You can easily find the term which occurs in the $10^{\text {th }}$ position (which is $3 \times 10=30$); $100^{\text {th }}$ position (which is $3 \times 100=300$) and so on.

* Pattern in geometry

What is the number of diagonals we can draw from one vertex of a quadrilateral? Check it, it is one.
From one vertex of a pentagon? Check it, it is 2 .

From one vertex of a hexagon? It is 3 .
The number of diagonals we can draw from one vertex of a polygon of n sides is $(n-3)$. Check it for a heptagon (7 sides) and octagon (8 sides) by drawing figures. What is the number for a triangle (3 sides)? Observe that the diagonals drawn from any one vertex divide the polygon in as many non-overlapping triangles as the number of diagonals that can be drawn from the vertex plus one.

Exercise 12.4

1. Observe the patterns of digits made from line segments of equal length. You will find such segmented digits on the display of electronic watches or calculators.
(a)

4
7

7

(b)
10
$13 \ldots \quad(3 n+1) \ldots$

12

17
(c)
$22 \ldots$ $(5 n+2) \ldots$

If the number of digits formed is taken to be n, the number of segments required to form n digits is given by the algebraic expression appearing on the right of each pattern.

How many segments are required to form $5,10,100$ digits of the kind \square, \square.
2. Use the given algebraic expression to complete the table of number pattern.

S.No	Expression	Terms									
		$\mathbf{1}^{\text {st }}$	$\mathbf{2}^{\text {nd }}$	$\mathbf{3}^{\text {rd }}$	$\mathbf{4}^{\text {th }}$	$\mathbf{5}^{\text {th }}$	\ldots	$\mathbf{1 0}^{\text {th }}$	\ldots	$\mathbf{1 0 0}^{\text {th }}$	\ldots
(i)	$2 n-1$	1	3	5	7	9	-	19	-	-	-
(ii)	$3 n+2$	2	5	8	11	-	-	-	-	-	-
(iii)	$4 n+1$	5	9	13	17	-	-	-	-	-	-
(iv)	$7 n+20$	27	34	41	48	-	-	-	-	-	-
(v)	$n^{2}+1$	2	5	10	17	-	-	-	-	10.001	-

What Have We Discussed

1. Algebraic expressions are formed from variables and constants. We use the operations of addition, subtraction, multiplication and division on the variables and constants to form expressions. For example, the expression $4 x y+7$ is formed from the variables x and y and constants 4 and 7. The constant 4 and the variables x and y are multiplied to give the product $4 x y$ and the constant 7 is added to this product to give the expression.
2. Expressions are made up of terms. Terms are added to make an expression. For example, the addition of the terms $4 x y$ and 7 gives the expression $4 x y+7$.
3. A term is a product of factors. The term 4 xy in the expression $4 y+7$ is a product of factors x, y and 4 . Factors containing variables are said to be algebraic factors.
4. The coefficient is the numerical factor in the term. Sometimes anyone factor in a term is called the coefficient of the remaining part of the term.
5. Any expression with one or more terms is called a polynomial. Specifically a one term expression is called a monomial; a two-term expression is called a binomial; and a threeterm expression is called a trinomial.
6. Terms which have the same algebraic factors are like terms. Terms which have different algebraic factors are unlike terms. Thus, terms $4 x y$ and $-3 x y$ are like terms; but terms $4 x y$ and $-3 x$ are not like terms.
7. The sum (or difference) of two like terms is a like term with coefficient equal to the sum (or difference) of the coefficients of the two like terms. Thus, $8 x y-3 x y=(8-3) x y$, i.e., $5 x y$.
8. When we add two algebraic expressions, the like terms are added as given above; the unlike terms are left as they are. Thus, the sum of $4 x^{2}+5 x$ and $2 x+3$ is $4 x^{2}+7 x+3$; the like terms $5 x$ and $2 x$ add to $7 x$; the unlike terms $4 x^{2}$ and 3 are left as they are.
9. In situation such as solving an equation and using a formula, we have to find the value of an expression. The value of the expression depends on the value of the variable from which the expression is formed. Thus, the value of $7 x-3$ for $x=5$ is 32 , since $7(5)-3=35-3=$ 32.
10. Rules and formulas in mathematics are written in a concise and general form using algebraic expressions:
Thus, the area of rectangle $=l b$, where l is the length and b is the breadth of the rectangle. The general $\left(n^{\text {th }}\right)$ term of a number pattern (or a sequence) is an expression in n. Thus, the $n^{\text {th }}$ term of the number pattern $11,21,31,41, \ldots$ is $(10 n+1)$

Exponents and
 Powers

Chapter 13

13.1 Introduction

Do you know what the mass of earth is? It is $5,970,000,000,000,000,000,000,000 \mathrm{~kg}$!

Can you read this number?
Mass of Uranus is $86,800,000,000,000,000,000,000,000$ kg.

Which has greater mass, Earth or Uranus?
Distance between Sun and Saturn is $1,433,500,000,000 \mathrm{~m}$ and distance between Saturn and Uranus is $1,439,000,000,000 \mathrm{~m}$. Can you read these numbers? Which distance is less?

These very large numbers are difficult to read, understand and compare. To make these numbers easy to read, understand and compare, we use exponents. In this Chapter, we shall learn about exponents and also learn how to use them.

13.2 EXPONENTS

We can write large numbers in a shorter form using exponents.
Observe $10,000=10 \times 10 \times 10 \times 10=10^{4}$
The short notation 10^{4} stands for the product $10 \times 10 \times 10 \times 10$. Here $=10^{\prime}$ is called the base and _ 4 the exponent. The number 10^{4} is read as 10 raised to the power of 4 or simply as fourth power of $\mathbf{1 0 . 1 0}$ is called the exponential form of 10,000 .

We can similarly express 1,000 as a power of 10 . Since 1,000 is 10 multiplied by itself three times,

$$
1000=10 \times 10 \times 10=10^{3}
$$

Here again, 10^{3} is the exponential form of 1,000 .
Similarly, $\quad 1,00,000=10 \times 10 \times 10 \times 10 \times 10=10^{5}$ 10^{5} is the exponential form of $1,00,000$
In both these examples, the base is 10 ; in case of 10^{3}, the exponent is 3 and in case of 10^{5} the exponent is 5 .

We have used numbers like $10,100,1000$ etc., while writing numbers in an expanded form. For example, $47561=4 \times 10000+7 \times 1000+5 \times 100+6 \times 10$ +1

This can be written as $4 \times 10^{4}+7 \times 10^{3}+5 \times 10^{2}+6 \times 10+1$.
Try writing these numbers in the same way $172,5642,6374$.
In all the above given examples, we have seen numbers whose base is 10 .

However the base can be any other number also. For example:
 $81=3 \times 3 \times 3 \times 3$ can be written as $81=3^{4}$, here 3 is the base and 4is the exponent.

Some powers have special names. For example, 10^{2}, which is 10 raised to the power 2, also read as 10 squared‘ and 10^{3}, which is 10 raised to the power 3 , also read as $=10$ cubed ${ }^{〔}$. Can you tell what 5^{3} (5 cubed) means?
5^{3} means 5 is to be multiplied by itself three times, i.e., $5^{3}=5 \times 5 \times 5=125$ So, we can say 125 is the third power of 5 .

What is the exponent and the base in 5^{3} ?
Similarly, $2^{5}=2 \times 2 \times 2 \times 2 \times 2=32$, which is the fifth power of 2 .
In $2^{5}, 2$ is the base and 5 is the exponent.
In the same way $\quad 243=3 \times 3 \times 3 \times 3 \times 3=3^{5}$

$$
\begin{aligned}
& 64=2 \times 2 \times 2 \times 2 \times 2 \times 2=2^{6} \\
& 625=5 \times 5 \times 5 \times 5=5^{4}
\end{aligned}
$$

TRY THESE

Find five more such examples, where a number is expressed in exponential form. Also identify the base and the exponents in each case.

You can also extend this way of writing when the base is a negative integer. What does $(-2)^{3}$ mean?

It is $(-2)^{3}=(-2) \times(-2) \times(-2)=-8$
Is $(-2)^{4}=16$? Check it.

Instead of taking a fixed number let us take any integer a as the base, and write the numbers as,
$a \times a=a^{2}\left(\operatorname{read}\right.$ as a squared' or $\underline{\underline{a}}$ raised to the power 2‘) $a \times a \times a=a^{3}($ read as a cubed or a raised to the power 3')
$a \times a \times a \times a=a^{4}\left(\right.$ read as a raised to the power 4 or the $4^{\text {th }}$ power of $\left.a\right)$
$a \times a \times a \times a \times \mathrm{a} \times a \times a=a^{7}$ (read as a raised to the power 7or the $7^{\text {th }}$ power of $\left.a\right)$ and so on. $a \times a \times a \times b \times b$ can be expressed as $a^{3} b^{2}$ (read as a cubed b squared) $a \times a \times b \times b \times b \times b$ can be expressed as $a^{2} b^{4}$ (read as a squared into b to the power of 4)

Example 1

Express 256 as a power 2.

Solution

Wehave $256=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$.
So we can say that $256=2^{8}$
Example 2
Which one is greater 2^{3} or $3^{2} ?$
Solution
We have, $2^{3}=2 \times 2 \times 2=8$ and $3^{2}=3 \times 3=9$.
Since $9>8$, so, 3^{2} is greater than 2^{3}
Example 3
Which one is greater 8^{2} or 2^{8} ?
Solution
$8^{2}=8 \times 8=64$
$2^{8}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=256$
Clearly, $2^{8}>8^{2}$
Example 4
Expand $a^{3} b^{2}, a^{2} b^{3}, b^{2} a^{3}, b^{3} a^{2}$. Are they all same?

Solution

$a^{3} b^{2}=a^{3} \times b^{2}$
$=(a \times a \times a) \times(b \times b)$
$=a \times a \times a \times b \times b$
$a^{2} b^{3}=a^{2} \times b^{3}$
$=a \times a \times b \times b \times b$
$b^{2} a^{3}=b^{2} \times a^{3}$
$=b \times b \times a \times a \times a$
$b^{3} a^{2}=b^{3} \times a^{2}$
$=b \times b \times b \times a \times a$
Note that in the case of terms $a^{3} b^{2}$ and $a^{2} b^{3}$ the powers of a and b are different. Thus $a^{3} b^{2}$ and $a^{2} b^{3}$ are different.
On the other hand, $a^{3} b^{2}$ and $b^{2} a^{3}$ are the same, since the powers of a and b in these two terms are the same. The order of factors does not matter.
Thus, $a^{3} b^{2}=a^{3} \times b^{2}=b^{2} \times a^{3}=b^{2} a^{3}$. Similarly, $a^{2} b^{3}$ and $b^{3} a^{2}$ are the same.

Example 5

Express the following numbers as a product of powers of prime factors:
(i) 72
(ii) 432
(iii) 1000
(iv) 16000

Solution

(i) $72=2 \times 36=2 \times 2 \times 18$

$$
\begin{aligned}
& =2 \times 2 \times 2 \times 9 \\
& =2 \times 2 \times 2 \times 3 \times 3=2^{3} \times 3^{2}
\end{aligned}
$$

Thus, $72=2^{3} \times 3^{2}$ (required prime factor product form)

2	72
2	36
2	18
3	9
	3

(ii) $432=2 \times 2 \times 108=2 \times 2 \times 2 \times 54$

$$
=2 \times 2 \times 2 \times 2 \times 27=2 \times 2 \times 2 \times 2 \times 3 \times 9
$$

$$
=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3
$$

or $\quad 432=2^{4} \times 3^{3}$
(iii) $1000=2 \times 500=2 \times 2 \times 250=2 \times 2 \times 2 \times 125$

$$
=2 \times 2 \times 2 \times 5 \times 25=2 \times 2 \times 2 \times 5 \times 5 \times 5
$$

or $\quad 1000=2^{3} \times 5^{3}$
Anil wants to solve this example in another way:

$$
\begin{aligned}
1000 & =10 \times 100=10 \times 10 \times 10 \\
& =(2 \times 5) \times(2 \times 5) \times(2 \times 5) \quad(\text { Since } 10=2 \times 5) \\
& =2 \times 5 \times 2 \times 5 \times 2 \times 5=2 \times 2 \times 2 \times 5 \times 5 \times 5
\end{aligned}
$$

$$
\text { or } \quad 1000=23 \times 53
$$

is Anil's method correct?
(iv) $16,000=16 \times 16 \times 1000=(2 \times 2 \times 2 \times 2) \times 1000=2^{4} \times 10^{3}$ (as $\left.16=2 \times 2 \times 2 \times 2\right)$

$$
=(2 \times 2 \times 2 \times 2) \times(2 \times 2 \times 2 \times 5 \times 5 \times 5)=2^{4} \times 2^{3} \times 5^{3}
$$

(Since $1000=2 \times 2 \times 2 \times 5 \times 5 \times 5$)
$=(2 \times 2 \times 2) \times(5 \times 5 \times 5)$
or

$$
=16,000=2^{7} \times 5^{3}
$$

Example 6
Workout $(1)^{5},(-1)^{3},(-1)^{4},(-10)^{3},(5)^{4}$.

Solution

(i) We have $(1)^{5}=1 \times 1 \times 1 \times 1 \times 1=1$

In fact, you will realise that 1 raised to any power is 1 .
(ii) $(-1)^{3}=(-1) \times(-1) \times(-1)=1 \times(-1)=-1$
$(-1)^{\text {odd number }} \quad=-1$
(iii) $(-1)^{4}=(-1) \times(-1) \times(-1) \times(-1)=1 \times 1==1$

You may check that (-1) raised to any odd power is (-1),
$(-1)^{\text {even number }}=+1$

And (-1) raised to any even power is $(+1)$.
(iv) $(-10)^{3}=(-10) \times(-10) \times(-10)=100 \times(-10)=-1000$
(v) $(-5)^{4}=(-5) \times(-5) \times(-5) \times(-5)=25 \times 25=625$

Exercise 13.1

1. Find the value of:
(i) 2^{6}
(ii) 9^{3}
(iii) 11^{2}
(iv) 5^{4}
2. Express the following in exponential form:
(i) $6 \times 6 \times 6 \times 6$
(ii) $t \times t$
(iii) $b \times b \times b \times b$
(iv) $5 \times 5 \times 7 \times 7 \times 7$
(v) $2 \times 2 \times a \times a$
(vi) $a \times a \times a \times c \times c \times c \times c \times d$
3. Express each of the following numbers using exponential notation:
(i) 512
(ii) 343
(iii) 729
(iv) 3125
4. Identify the greater number, wherever possible, in each of the following?
(i) 4^{3} or 3^{4}
(ii) 5^{3} or 3^{5}
(iii) 2^{8} or 8^{2}
(iv) 100^{2} or 2^{100}
(v) 2^{10} or 10^{2}
5. Express each of the following as product of powers of their prime factors:
(i) 648
(ii) 405
(iii) 540
(iv) 3,600
6. Simplify:
(i) 2×10^{3}
(ii) $7^{2} \times 2^{2}$
(iii) $2^{3} \times 5$
(iv) 3×4^{4}
(v) 0×10^{2}
(vi) $5^{2} \times 3^{3}$
(vii) $2^{4} \times 3^{2}$
(viii) $3^{2} \times 10^{4}$
7. Simplify:
(i) $(-4)^{3}$
(ii) $(-3) \times(-2)^{3}$
(iii) $(-3)^{2} \times(-5)^{2}$
(v) $(-2)^{3} \times(-10)^{3}$
8. Compare the following numbers:
(i) $2.7 \times 10^{12} ; 1.5 \times 10^{8}$
(ii) $4 \times 10^{14} ; 3 \times 10^{17}$

13.3 Laws of Exponents

13.3.1 Multiplying Powers with the same Base
(i) Let us calculate $2^{2} \times 2^{3}$

$$
\begin{aligned}
2^{2} \times 2^{3}= & (2 \times 2) \times(2 \times 2 \times 2) \\
& =2 \times 2 \times 2 \times 2 \times 2=2^{5}=2^{2+3}
\end{aligned}
$$

Note that the base 2^{2} and 2^{3} is same and the sum of the exponents, i.e., 2 and 3 , is 5
(ii) $(-3)^{4} \times(-3)^{3}=[(-3) \times(-3) \times(-3) \times(-3)] \times[(-3) \times(-3) \times(-3)]$

$$
\begin{aligned}
& =(-3) \times(-3) \times(-3) \times(-3) \times(-3) \times(-3) \times(-3) \\
& =(-3)^{7} \\
& =(-3)^{4+3}
\end{aligned}
$$

Again, note that the base is same and the sum of exponents, i.e., 4 and 3 , is 7
(iii) $a^{2} \times a^{4}=(a \times a) \times(a \times a \times a \times a)$

$$
=a \times a \times a \times a \times a \times a=a^{6}
$$

(Note: the base is the same and the sum of the exponents is $2+4=6$) Similarly, verify:

$$
\begin{aligned}
& 4^{2} \times 4^{2}=4^{2+2} \\
& 3^{2} \times 3^{3}=3^{2+3}
\end{aligned}
$$

Can you write the appropriate number in the box.
$(-11)^{2} \times(-11)^{6}=(-11)^{\square}$
$b^{2} \times b^{3}=b \square_{\text {(Remember, base is same; } \mathrm{b} \text { is an integer) }}$
$c^{3} \times c^{4}=c \square(\mathrm{c}$ is any integer)
$d^{10} \times d^{20}=d$

From this we can generalise that for any non-zero integer a , where m and n are whole numbers,

$$
a^{m} \times a^{n}=a^{m+n}
$$

Caution!

Consider $2^{3} \times 3^{2}$
Can you add the exponents? No! Do you see _why"? The base of 2^{3} is 2 and base of 3^{2} is 3 . The bases are not same.

13.3.2 Dividing Powers With The Same Base

Let us simplify $3^{7} \div 3^{4}$?

$$
\begin{aligned}
& \quad \begin{aligned}
3^{7} \div 3^{4} & =\frac{3^{7}}{3^{4}}=\frac{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}{3 \times 3 \times 3 \times 3} \\
& =3 \times 3 \times 3=3^{3}=3^{7-4} \\
\text { Thus, } \quad 3^{7} \div 3^{4} & =3^{7-4}
\end{aligned} .
\end{aligned}
$$

(Note 3^{7} and 3^{4} the base is same and $3^{7} \div 3^{4}$ becomes 3^{7-4})

Similarly,

$$
\begin{aligned}
5^{6} \div 5^{2} & =\frac{5^{6}}{5^{2}}=\frac{5 \times 5 \times 5 \times 5 \times 5 \times 5}{5 \times 5} \\
& =5 \times 5 \times 5 \times 5=5^{4}=5^{6-2} \\
\text { or } \quad 5^{6} \div 5^{2} & =5^{6-2}
\end{aligned}
$$

Let a be a non-zero integer, then,

$$
\begin{aligned}
& a^{4} \div a^{2}=\frac{a^{4}}{a^{2}}=\frac{a \times a \times a \times a}{a \times a}=a \times a=a^{2}=a^{4-2} \\
& a^{4} \div a^{2}=a^{4-2}
\end{aligned}
$$

or
Now can you answer quickly?

$$
10^{8} \div 10^{3}=10^{8-3}=10^{5}
$$

$$
\begin{gathered}
7^{9} \div 7^{6}=7 \\
a^{8} \div a^{5}=a^{\square}
\end{gathered}
$$

For non-zero integers b and c ,

$$
\begin{gathered}
b^{10} \div b^{5}=b \\
c^{100} \div c^{90}=c^{\square}
\end{gathered}
$$

In general, for any non-zero integer a,

$$
a^{m} \div a^{n}=a^{m-n}
$$

Where m and n are whole numbers and $m>n$

13.3.3 Taking Power of a Power

Consider the following
Simplify $\mathbf{1}^{32}, 2^{2}$,
Now, (${ }^{3}$ means 2^{3} is multiplied two times with itself.

$$
\begin{aligned}
\left.\mathbf{l}^{3}\right) & =2^{3} \times 2^{3} \\
& =2^{3+3}\left(\text { Since } a^{m} \times a^{n}=a^{m+n}\right. \\
& =2^{6}=2^{3 \times 2}
\end{aligned}
$$

Thus, (3) $=2^{3 \times 2}$

Similarly

$$
\begin{aligned}
\mathbf{Q}^{2} & =3^{2} \times 3^{2} \times 3^{2} \times 3^{2} \\
& =3^{2+2+2+2} \\
& =3^{8} \quad(\text { Observe } 8 \text { is the product of } 2 \text { and } 4) . \\
& =3^{2 \times 4}
\end{aligned}
$$

Can you tell what would \boldsymbol{r}^{2}, , would be equal to?

So

$$
\begin{aligned}
& \text { (} \left.\left.{ }^{3}\right)^{2}\right)=2^{3 \times 2}=2^{6} \\
& \text { (} \left.{ }^{2}\right)^{2}=3^{2 \times 4}=3^{8} \\
& \mathbf{(2}^{2} \text {, }=7^{2 \times 10}=7^{20} \\
& \text { (2) }{ }^{2}=a^{2 \times 3}=a^{6} \\
& \text { (}{ }^{m} \text {) }=a^{m \times 3}=a^{3 m}
\end{aligned}
$$

From this we can generalise for any non-zero integer $a^{\text {a }}$, where $m^{m^{c}}$ and $\underline{n}^{\text {a }}$ are whole numbers,

$$
\mathbf{4}^{m \pi},=a^{m n}
$$

Example 7

Can you tell which one is greater ${ }^{2} \times 3$ or ${ }^{2}{ }^{3}$?

Solution

(2 $\times 3$ means 5^{2} is multiplied by 3 i.e., $5 \times 5 \times 3=75$
but ${ }^{2}$, means 5^{2} is multiplied by itself three times i.e.,

$$
5^{2} \times 5^{2} \times 5^{2}=15,625
$$

Therefore

$$
\left.\left({ }^{2}\right)^{2}\right)^{2} x^{3}
$$

13.3.4 Multiplying Powers with The Same Exponents

Can you simplify $2^{3} \times 3^{3}$? Notice that here the two terms 2^{3} and 3^{3} have different bases, but the same exponents.

$$
\begin{aligned}
& \text { NOW, } \quad 2^{3} \times 3^{3}=\times 2 \times 2 \times 3 \times 3 \text {, } \\
& =\mathbf{e} \times 3 \times 3 \times 3 \times 3 \text {, } \\
& =6 \times 6 \times 6 \\
& =6^{3} \quad \text { (Observe } 6 \text { is the product of bases } 2 \text { and } 3 \text {) } \\
& \text { Consider } 4^{4} \times 3^{4}=4 \times 4 \times 4 \times 4 \times 3 \times 3 \times 3 \text {, } \\
& =4 \times 3 \times 4 \times 3 \times 4 \times 3 \times 4 \times 3 \text {, } \\
& =12 \times 12 \times 12 \times 12 \\
& =12^{4} \\
& \text { Consider, also, } 3^{2} \times a^{2}=3 \times 3 \times a^{-}, \\
& =\times a \times a^{2} \\
& =\times a^{2} \text {, } \\
& =a^{2} \quad(\text { Note } 3 \times a=3 a) \\
& \text { Similarly, } a^{4} \times b^{4}=\left(\times a \times a \times a \times \times \times b \times b \times b^{-}\right. \text {, } \\
& =4 \times b \times 4 \times b \times 4 \times b \times{ }^{2} \times \\
& =4 \times b^{7} \text {, } \\
& =4 b^{7} \quad(\text { Note } a \times b=a b)
\end{aligned}
$$

In general, for any non - zero integer a

$$
\left.a^{m} \times b^{m}=b^{m} \quad \text { (where } m \text { is any whole number }\right)
$$

Example 8
Express the following terms in the exponential form:
(i) $\times 3^{3}$
(ii) a^{7}
(iii) $\left\langle 4 m^{>}\right\}$

Solution

$$
\text { (i) } \begin{aligned}
\times 3^{3} & =\times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \\
& =2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \\
& =2^{5} \times 3^{5}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\left(a^{7}\right. & =2 a \times 2 a \times 2 a \times 2 a \\
& =(\times 2 \times 2 \times 2 \times(\times a \times a \times a) \\
& =2^{4} \times a^{4}
\end{aligned}
$$

(iii) $<4 m^{3}=44 \times m^{3}$

$$
\begin{aligned}
& =4 \times m \times 4 \times m \times 4 \times m \\
& =4 \times 4 \times 4 \times 4 \times m \times 4^{-}=4^{3} \times 4^{3}
\end{aligned}
$$

13.3.5 Dividing Powers With The Same Exponents

Observe the following simplifications:
(i) $\frac{2^{4}}{3^{4}}=\frac{2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3}=\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}=\left(\frac{2}{3}\right)^{4}$
(ii) $\frac{a^{3}}{b^{3}}=\frac{a \times a \times a}{b \times b \times b}=\frac{a}{b} \times \frac{a}{b} \times \frac{a}{b}=\left(\frac{a}{b}\right)^{3}$

From these examples we may generalise
$a^{m} \div b^{m}=\frac{a^{m}}{b^{m}}=\left(\frac{a}{b}\right)^{m}$ where a and b are any non - zero integers m is a whole number.

Example 9

Expand: (i) $\left(\frac{3}{5}\right)^{4}$
(ii) $\left(\frac{4}{7}\right)^{5}$

Solution
(i) $\left(\frac{3}{5}\right)^{4}=\frac{3^{4}}{5^{4}}=\frac{3 \times 3 \times 3 \times 3}{5 \times 5 \times 5 \times 5}$
(ii) $\left(\frac{4}{7}\right)^{5}=\frac{4^{5},}{7^{5}}=\frac{4_{4}^{-} 4^{-}, 4^{-}, 4^{-}, 4^{-}}{7777}$

What is a^{0} ?
Observe the following pattern:

$$
\begin{aligned}
& 2^{6}=64 \\
& 2^{5}=32 \\
& 2^{4}=16 \\
& 2^{3}=8 \\
& 2^{2}=? \\
& 2^{1}=? \\
& 2^{0}=?
\end{aligned}
$$

You can guess the value of 2^{0} by just studying the pattern!
You find that $2^{0}=1$
If you start from $3^{6}=729$, and proceed as shown above finding $3^{5}, 3^{4}, 3^{3}, \ldots$ etc, what will be $3^{0}=$?

* Numbers With Exponent Zero

Can you tell what $\frac{3^{5}}{3^{5}}$ equals to?

$$
\frac{3^{5}}{3^{5}}=\frac{3 \times 3 \times 3 \times 3 \times 3}{3 \times 3 \times 3 \times 3 \times 3}=1
$$

by using laws of exponents

$$
\begin{aligned}
3^{5} \div 3^{5} & =3^{5-5}=3^{0} \\
3^{0} & =1
\end{aligned}
$$

So
Can you tell what 7^{0} equal to?

$$
7^{3} \div 7^{3}=7^{3-3}=7^{0}
$$

And

$$
\frac{7^{3}}{7^{3}}=\frac{7 \times 7 \times 7}{7 \times 7 \times 7}=1
$$

Therefore

$$
7^{0}=1
$$

Similarly

$$
a^{3} \div a^{3}=a^{3-3}=a^{0}
$$

And $\quad a^{3} \div a^{3}=\frac{a^{3}}{a^{3}}=\frac{a \times a \times a}{a \times a \times a}=1$
Thus

$$
a^{0}=1(\text { for any non }- \text { zero integer } a)
$$

So, we can say that any number (except 0) raised to the power (or exponent) 0 is 1 .

13.4 Miscellaneous Examples Using The Laws Of Exponents

Let us solve some examples using rules of exponent developed.
Example 10
Write exponential form for $8 \times 8 \times 8 \times 8$ taking base as 2 .

Solution

We have, $8 \times 8 \times 8 \times 8=8^{4}$
But we know that

$$
8=2 \times 2 \times 2=2^{3}
$$

Therefore

$$
\begin{aligned}
8^{4} & =\left(^{3},=2^{3} \times 2^{3} \times 2^{3} \times 2^{3}\right. \\
& =2^{3 \times 4} \quad\left[\text { You may also use }{ }^{m}, \quad=a^{m n}\right] \\
& =2^{12}
\end{aligned}
$$

Example 11

Simplify and write the answer in exponential form.
(i) $\left(\frac{3^{7}}{3^{2}}\right) \times 3^{5}$
(ii) $2^{3} \times 2^{2} \times 5^{5}$
(iii) $\mathbf{Q}^{2} \times 6^{4} \frac{9}{j} 6^{3}$
(iv) $\left[5^{3} \times 3^{6} \rtimes 5^{6}\right.$
(v) $8^{2} \div 2^{3}$

Solution

(i) $\left(\frac{3^{7}}{3^{2}}\right) \times 3^{5}=\mathbf{l}^{7-2} \times 3^{5}$

$$
=3^{5} \times 3^{5}=3^{5+5}=3^{10}
$$

(ii) $2^{3} \times 2^{2} \times 5^{5}=2^{3+2} \times 5^{5}$

$$
=2^{5} \times 5^{5}=\times 5^{3},=10^{5}
$$

(iii) ${ }^{2} \times 6^{4} \stackrel{\vdots}{\boldsymbol{j}} 6^{3}=6^{2+4} \div 6^{3}$

$$
=\frac{6^{6}}{6^{3}}=6^{6-3}=6^{3}
$$

(iv) $\boldsymbol{k}^{2}{ }^{3} \times 3^{6} \rtimes 5^{6}=\mathbb{K}^{6} \times 3^{6} \rtimes 5^{6}$

$$
\begin{aligned}
& =\mathbb{\$} \times 3^{\gamma}, \times 5^{6} \\
& =\mathbb{C} \times 3 \times 5^{\gamma},=30^{6}
\end{aligned}
$$

(v) $8=2 \times 2 \times 2=2^{3}$

Therefore $8^{2} \div 2^{3}=2^{3} \div 2^{3}$

$$
=2^{6} \div 2^{3}=2^{6-3}=2^{3}
$$

Example 12
Simplify:
(i) $\frac{12^{4} \times 9^{3} \times 4}{6^{3} \times 8^{2} \times 27}$
(ii) $2^{3} \times a^{3} \times 5 a^{4}$
(iii) $\frac{2 \times 3^{4} \times 2^{5}}{9 \times 4^{2}}$

Solution

(i) We have

$$
\begin{aligned}
\frac{12^{4} \times 9^{3} \times 4}{6^{3} \times 8^{2} \times 27} & =\frac{1^{2} \times 3^{7} \times 3^{3} \times 2^{2}}{3^{3} \times 3^{3}} \\
& =\frac{1^{2} \times 3^{4} \times 3^{2 \times 3} \times 2^{2}}{2^{3} \times 3^{3} \times 2^{2 \times 3} \times 3^{3}}=\frac{2^{8} \times 2^{2} \times 3^{4} \times 3^{6}}{2^{3} \times 2^{6} \times 3^{3} \times 3^{3}} \\
& =\frac{2^{8+2} \times 3^{4+6}}{2^{3+6} \times 3^{3+3}}=\frac{2^{10} \times 3^{10}}{2^{9} \times 3^{6}} \\
& =2^{10-9} \times 3^{10-6}=2^{1} \times 3^{4} \\
& =2 \times 81=162
\end{aligned}
$$

(ii) $2^{3} \times a^{3} \times 5 a^{4}=2^{3} \times a^{3} \times 5 \times a^{4}$

$$
\begin{aligned}
& =2^{3} \times 5 \times a^{3} \times a^{4}=8 \times 5 \times a^{3+4} \\
& =40 a^{7}
\end{aligned}
$$

(iii) $\frac{2 \times 3^{4} \times 2^{5}}{9 \times 4^{2}}=\frac{2 \times 3^{4} \times 2^{5}}{3^{2} \times \mathbf{1}^{2}}=\frac{2 \times 2^{5} \times 3^{4}}{3^{2} \times 2^{2 \times 2}}$

$$
\begin{aligned}
& =\frac{2^{1+5} \times 3^{4}}{2^{4} \times 3^{2}}=\frac{2^{6} \times 3^{4}}{2^{4} \times 3^{2}}=2^{6-4} \times 3^{4-2} \\
& =2^{2} \times 3^{2}=4 \times 9=36
\end{aligned}
$$

Note: In most of the examples that we have taken in this chapter, the base of a power was taken an integer. But all the results of the chapter apply equally well to a base which is a rational number.

1. Fill in the blanks:
(a) $2^{3}+2^{4}=2 \cdots$
(b) $44^{-3} \times 4^{\gamma}=44^{-}$
(c) $\left(\frac{2}{3}\right)^{7} \times\left(\frac{2}{3}\right)^{4}=\left(\frac{2}{3}\right)^{\cdots}$
(d) $\left(\frac{3}{4}\right)^{8} \div\left(\frac{3}{4}\right)^{5}=\left(\frac{3}{4}\right)^{\cdots}$
(e) $<4^{4} \div<4^{3}=4^{-}$
(f) $\left(\frac{-3}{7}\right)^{7} \div\left(\frac{-3}{7}\right)=\left(\frac{-3}{7}\right)$
(g) $8^{13} \div 8^{19}=\frac{1}{8 \cdots}$
(h) $<14^{+1} \div 4^{+5}=\frac{1}{44^{-}}$
2. Simplify:
(a) $\left(\frac{2}{3}\right)^{2} \times\left(\frac{2}{3}\right)^{3}$
(b) $\left(\frac{-3}{4}\right)^{4} \div\left(\frac{-3}{4}\right)^{2}$
(c) $44^{\gamma} \div 4^{\gamma}$,
(d) $\left(\frac{1}{2^{3}}\right)^{2}$
(e) $\frac{2^{3} \times 3^{4} \times 4}{3 \times 32}$
(f) $\frac{3^{7}}{3^{4} \times 3^{3}}$
(g) $\frac{2^{8} \times a^{5}}{4^{3} \times a^{3}}$
(h) $\left[\left(\frac{2}{3}\right)^{4}\right]^{2}$
(i) $2^{0}+3^{0}+4^{0}$
(j) $2^{0} \times 3^{0} \times 4^{0}$
3. Say true or false and justify your answer:
(i) $10 \times 10^{11}=100^{11}$
(ii) $2^{3}>5^{2}$
(iii) $2^{3} \times 3^{2}=6^{5}$
(iv) $3^{0}=\left(000^{\top}\right.$,
4. Express each of the following as a product of prime factors only in exponential form:
(i) 108×192
(ii) 270
(iii) 729×64
(iv) 768
5. Simplify:
(i) $\frac{\text { (}^{2} \times 7^{3}}{8^{3} \times 7}$
(ii) $\frac{25 \times 5^{2} \times t^{8}}{10^{3} \times t^{4}}$
(iii) $\frac{3^{5} \times 10^{5} \times 25}{5^{7} \times 6^{5}}$

13.5 Decimal Number System

Let us look at the expression of 47561, which we already know:

$$
47561=4 \times 10000+7 \times 1000+5 \times 100+6 \times 10+1
$$

We can express it using powers of 10 in the exponent form:
Therefore, $\quad 47561=4 \times 10^{4}+7 \times 10^{3}+5 \times 10^{2}+6 \times 10^{1}+1 \times 10^{0}$

$$
\text { (Note } 10,000=10^{4}, 1000=10^{3}, 100=10^{2}, 10=10^{1} \text { and } 1=10^{0} \text {) }
$$

Let us expand another number:

$$
\begin{aligned}
104278 & =1 \times 100,000+0 \times 10,000+4 \times 1000+2 \times 100+7 \times 10+8 \times 1 \\
& =1 \times 10^{5}+0 \times 10^{4}+4 \times 10^{3}+2 \times 10^{2}+7 \times 10^{1}+8 \times 10^{0} \\
& =1 \times 10^{5}+4 \times 10^{3}+2 \times 10^{2}+7 \times 10^{1}+8 \times 10^{0}
\end{aligned}
$$

Notice how the exponents of 10 start from a maximum value of 5 and go on decreasing by 1 at a step from the left to the right upto 0 .

13.6 Expressing Large Numbers In The Standard Form

Let us now go back to the beginning of the chapter. We said that large numbers can be conveniently expressed using exponents. We have not as yet shown this. We shall do so now.

1. Sun is located $300,000,000,000,000,000,000 \mathrm{~m}$ from the centre of our Milky Way Galaxy.
2. Number of stars in our Galaxy is $100,000,000,000$.
3. Mass of the Earth is $5,976,000,000,000,000,000,000,000 \mathrm{~kg}$.

These numbers are not convenient to write and read. To make it convenient we use powers. Observe the following:

$$
\begin{aligned}
59 & =5.9 \times 10=5.9 \times 10^{1} \\
590 & =5.9 \times 100=5.9 \times 10^{2} \\
5900 & =5.9 \times 1000=5.9 \times 10^{3} \\
59000 & =5.9 \times 10000=5.9 \times 10^{4} \text { and so on }
\end{aligned}
$$

We have expressed all these numbers in the standard form. Any number can be expressed as a decimal number between 1.0 and 10.0 including 1.0 multiplied by a power of 10 . Such a form of a number is called its standard form. Thus,

$$
5,985=5.985 \times 1,000=5.985 \times 10^{3} \text { is the standard form of } 5,985
$$

Note, 5,985 can also be expressed as 59.85×100 or 59.85×10^{2}. But these are not the standard forms, of 5,985. Similarly, 5,985 $=0.5985 \times 10,000=0.5985 \times 10^{4}$ is also not the standard form of 5,985.

We are now ready to express the large numbers we came across at the beginning of the chapter in this form.

The, distance of Sun from the centre of our Galaxy i.e., $300,000,000,000,000,000,000 \mathrm{~m}$ can be written as $3.0 \times 100,000,000,000,000,000,000=3.0 \times 10^{20} \mathrm{~m}$

Now, can you express $40,000,000,000$ in the similar way?
Count the number of zeros in it. It is 10 .
So,

$$
40,000,000,000=4.0 \times 10^{10}
$$

Mass of the Earth $=5,976,000,000,000,000,000,000,000 \mathrm{~kg}$

$$
=5.976 \times 10^{24} \mathrm{~kg}
$$

Do you agree with the fact, that the number when written in the standard form is much easier to read, understand and compare than when the number is written with 25 digits?

Now,

$$
\begin{aligned}
\text { Mass of Uranus } & =86,800,000,000,000,000,000,000,000 \mathrm{~kg} \\
& =8.68 \times 10^{25} \mathrm{~kg}
\end{aligned}
$$

Simply by comparing the powers of 10 in the above two, you can tell that the mass of Uranus is greater than that of the Earth.

The distance between Sun and Saturn is $1,433,500,000,000 \mathrm{~m}$ or $1,4335 \times 10^{12} \mathrm{~m}$. The distance between Saturn and Uranus is $1,439,000,000,000 \mathrm{~m}$ or $1.439 \times 10^{12} \mathrm{~m}$. The distance between Sun and Earth is $149,600,000,000 \mathrm{~m}$ or $1.49610^{12} 10^{11} \mathrm{~m}$. Can you tell which of the three distances is smallest?

Example 13

Express the following numbers in the standard form:
(i) 5985.3
(ii) 65,950
(iii) $3,430,000$
(iv) $70,040,000,000$

Solution

(i) $\quad 5985.3=5.9853 \times 1000=5.9853 \times 10^{3}$
(ii) $65,950=6.595 \times 10,000=6.595 \times 10^{4}$
(iii) $3,430,000=3.43 \times 1,000,000=3.43 \times 10^{6}$
(iv) $70,040,000,000=7.004 \times 10,000,000,000=7.004 \times 10^{10}$

A point to remember is that one less than the digit count (number of digits) to the left of the decimal point in a given number is the exponent of 10 in the standard form. Thus, in $70,040,000,000$ there is no decimal point shown; we assume it to be at the (right) end. From there, the count of the places (digits) to the left is 11 . The exponent of 10 in the standard form is $11-1=10$. In 5985.3 there are 4 digits to the left of the decimal point and hence the exponent of 10 in the standard form is $4-1=3$.

Exercise 13.3

1. Write the following numbers in the expanded forms:

279404, 3006194, 2806196, 120719, 20068
2. Find the number from each of the following expanded forms:
(a) $8 \times 10^{4}+6 \times 10^{3}+0 \times 10^{2}+4 \times 10^{1}+5 \times 10^{0}$
(b) $4 \times 10^{5}+5 \times 10^{3}+3 \times 10^{2}+2 \times 10^{0}$
(c) $3 \times 10^{4}+7 \times 10^{2}+5 \times 10^{0}$
(d) $9 \times 10^{5}+2 \times 10^{2}+3 \times 10^{1}$
3. Express the following numbers in standard form:
(i) $5,00,00,000$
(ii) $70,00,000$
(iii) $3,18,65,00,000$
(iv) $3,90,878$
(v) 39087.8
(vi) 3908.78
4. Express the number appearing in the following statements in standard form.
(a) Distance between Earth and Moon is $384,000,000 \mathrm{~m}$.
(b) Speed of light in vacuum is $300,000,000 \mathrm{~m} / \mathrm{s}$.
(c) Diameter of the Earth is $1,27,56,000 \mathrm{~m}$.
(d) Diameter of Sun is $1,400,000,000 \mathrm{~m}$.
(e) In a galaxy there are on an average $100,000,000,000$ stars.
(f) The universe is estimated to be about $12,000,000,000$ years old.
(g) The distance of the Sun from the centre of the Milky Way Galaxy is estimated to be $300,000,000,000,000,000,000 \mathrm{~m}$.
(h) $60,230,000,000,000,000,000,000$ molecules are contained in a drop of water weighing 1.8 gm.
(i) The Earth has $1,353,000,000$ cubic km of sea water.
(j) The population of India was about 1,027,000,000 in March, 2001.

What Have We Discussed

1. Very large numbers are difficult to read, understand, compare and operate upon. To make all these easier, we use exponents, converting many of the large numbers in a shorter form.
2. The following are exponential forms of some numbers?

$$
\begin{aligned}
10,000 & =10^{4}(\text { read as } 10 \text { raised to } 4) \\
243 & =3^{5}, \quad 128=2^{7} .
\end{aligned}
$$

Here, 10, 3 and 2 are the bases, whereas 4,5 and 7 are their respective exponents. We also say, 10,000 is the $4^{\text {th }}$ power of 10,243 is the $5^{\text {th }}$ power of 3 , etc.
3. Numbers in exponential form obey certain laws, which are:

For any non-zero integers a and b and whole numbers m and n,
(a) $a^{m} \times a^{n}=a^{m+n}$
(b) $a^{m} \div a^{n}=a^{m-n}, \quad m>n$
(c) $<^{m} \rightarrow=a^{m n}$
(d) $a^{m} \times b^{m}=b^{m}$
(e) $a^{m} \div b^{n}=\left(\frac{a}{b}\right)^{m}$
$(f) a^{0}=1$
$(g)<1_{-}^{\text {Zeven number }}=1$
$<_{1}^{\text {Ddd number }}=-1$

Exercise 1.1

1. (a) Lahulspiti: $-8^{\circ} \mathrm{C}$, Srinagar: $-2^{\circ} \mathrm{C}$, Shimla: $5^{\circ} \mathrm{C}$, Ooty: $14^{\circ} \mathrm{C}$, Bangalore: $22^{\circ} \mathrm{C}$
(b) $30^{\circ} \mathrm{C}$
(c) $6^{\circ} \mathrm{C}$
(d) Yes; No
2. 35
3. $-7^{\circ} \mathrm{C} ;-3^{\circ} \mathrm{C}$
4. 6200 m
5. By a positive integer; Rs 358
6. By a negative integer; -10 .
7. (ii) is the magic square
8. (a) $<$
(b) $<$
(c) $>$
(d) $\mathrm{s}<$
(e) $>$
9. (i) 11 jumps (ii) 5 jumps
(iii) (a) $-3+2-3+2-3+2-3+2-3+2-3=-8$
(b) $4-2+4-2+4=8$

8 in (b) represents going up 8 steps.

Exercise 1.2

1. One such pair could be:
(a) $-10,3$
(b) $-6,4 ;(-6-4=-10)$
(c) , $-3,3$
2. One such pair could be:
(a) $-2,-10 ;[-2-(-10)=8]$
(b) $-6,1$
(c) $-1,2 ;(-1-2=-3)$
3. Team A; Yes
4. (i) -5
(ii) +6
(iii) 19
(iv) (-7)
(v) (-5)

Exercise 1.3

1. (a) -3 (b) -225
(c) 630
(d) 316
(e) 0
(f) 1320
(g) 162
(h) -360
(i) -24
(j) 36
2. (i) $-a$ (ii) $-m$
3. $-1 \times 5=-5,-1 \times 4=-4,-5+1,-1 \times 3=-3=-4+1$,
$-1 \times 2=-2=-3+1,-1 \times 1=-1=-2+1,-1 \times 0=0=-1+1$ so,$-1 \times(-1)=0+1=1$.
4. (a) 480
(b) -53000
(c) -15000
(d) -4182
(e) -62500
(f) 336
(g) 493
(h) 1140
5. $-10^{\circ} \mathrm{C}$
6. (i) 8 (ii) 15
(iii) 0
7. (a) Loss of Rs 1000
(b) 4000 bags
8. (a) -9
(b) -7
(c) 7
(d) -11
9. (a) -9
(b) -9
(c) 8
(d) -3

Exercise 1.4

1. $(a)-4.8$
(b) -5
(c) 4
(e) -1
(f) 0
(g) 16
2. (a) 1
(b) -5
(c) 13
(d) -84
(e) -4
(d) -1
3. $(-6,2),(-12,-4),(12-4),(9,-3)(-9,3) \quad$ (There could be many such pairs)
4. 9 p.m.: $-14^{\circ} \mathrm{C}$
5. (i) 8
(ii) 13
6. 1 hour

Exercise 2.1

1. (i) $\frac{7}{5}$
(ii) $\frac{39}{8}\left(=4 \frac{7}{8}\right)$
(iii) $\frac{31}{35}$
(iv) $\frac{91}{165}$
(v) $\frac{13}{5}\left(=2 \frac{3}{5}\right)$
(vi) $\frac{37}{6}\left(=6 \frac{1}{6}\right)$
(vii) $\frac{39}{8}\left(=4 \frac{7}{8}\right) \quad$ (viii) $\frac{1}{2}$
2. (i) $\frac{4}{35}, \frac{2}{5}, \frac{4}{7}, \frac{8}{7}$
3. $\mathrm{Yes}\left(\operatorname{Sum}=\frac{15}{13}\right)$
4. $\frac{139}{3}\left(=46 \frac{1}{3}\right) \mathrm{cm}$
5. (i) $9 \frac{3}{20}$ Sq. cm
(ii) 14 Sq. cm

Square
6. $\frac{3}{10} \mathrm{~cm}$
7. $\frac{2}{3}\left(=1-\frac{1}{3}\right)$, Ruksana, $\frac{1}{3}$.
8. Ashiq; by $\frac{1}{6}$ of an hour.

Exercise 2.2

1. (i) (d)
(ii) (b)
(iii) (a)
(iv) (c)
2. (i) (c)
(ii) (a)
(iii) (b)
3. (i) $4 \frac{1}{5}$
(ii) $1 \frac{1}{3}$
(iii) $1 \frac{5}{7}$
(iv) $1 \frac{1}{9}$
(v) $2 \frac{2}{3}$
(vi) 15
(vii) $6 \frac{2}{7}$
(viii) 16
(ix) $4 \frac{1}{3}$
(x) 9
(xi) $\frac{48}{8}$ (xii) $\frac{18}{7}, 2 \frac{4}{7}$
4. One way of doing this is:

(iii)
5. (a) (i) 12
(ii) 23
(b) (i) 12
(ii) 18
(c) (i) 12
(ii) 27
6. (a) $15 \frac{3}{5}$
(b) $33 \frac{3}{4}$
(c) $15 \frac{3}{4}$
(d) $25 \frac{1}{3}$
(d) (i) 16 (ii) 28
(e) $19 \frac{1}{2}$
(f) $27 \frac{1}{5}$
7. (a) (i) $1 \frac{3}{8}$ (ii) $2 \frac{1}{9}$
(b) (i) $2 \frac{19}{48}$
(ii) $6 \frac{1}{24}$
8. (i) Rozy $=130 \mathrm{gm}$
(ii) Tabassum $=\frac{9}{10}$ gm
9. (i) Javaid $=4$ pieces, Sameena $=2$ pieces, Munish $=6$ pieces
(ii) $\frac{12}{24}=\frac{1}{2}$

Exercise 2.3

1. (i) (a) $\frac{1}{16}$
(b) $\frac{3}{20}$
(c) $\frac{1}{3}$
(ii) (a) $\frac{2}{63}$
(b) $\frac{6}{35}$
(c) $\frac{3}{70}$
(iii) $\frac{1}{7}, \frac{1}{9}, \frac{4}{13}$
2. (i) $1 \frac{7}{9}$
(ii) $\frac{2}{9}$
(iii) $\frac{9}{16}$
(iv) $1 \frac{2}{25}$
(v) $\frac{5}{8}$
(vi) $1 \frac{13}{20}$
(vii) $1 \frac{13}{48}$
(viii) $\frac{11}{21}$
(ix) $\frac{3}{4}$
(x) 1
3. (i) $2 \frac{1}{10}$
(ii) $4 \frac{44}{55}$
(iii) 8
(iv) $2 \frac{1}{42}$
(v) $1 \frac{33}{35}$
(vi) $7 \frac{4}{5}$
(vii) $2 \frac{1}{7}$
(viii) $\frac{62}{5}$
(ix) 16
4. (i) $\frac{3}{5}$ of $\frac{5}{8}$
(ii) $\frac{1}{2}$ of $\frac{6}{7}$
5. $2 \frac{1}{4} \mathrm{~m}$
6. $10 \frac{1}{2}$ hours
7. (a) (i) $\frac{5}{10}$
(ii) $\frac{1}{2}$
(b) (i) $\frac{8}{15}$
(ii) $\frac{8}{15}$
(c) $\frac{4}{13}$
8. 44 km

Exercise 2.4

1. (i) 16
(ii) $\frac{84}{5}$
(iii) $\frac{24}{7}$
(iv) $\frac{3}{2}$
(v) $\frac{9}{7}$
(vi) $\frac{7}{5}$
(vii) $\frac{3}{2} \quad$ (viii) $\frac{14}{169}$
2. (i) $\frac{7}{3}$ (improper fraction)
(ii) $\frac{8}{5}$ (improper fraction) \quad (iii) $\frac{7}{9}$ (proper fraction)
(iv) $\frac{5}{6}$ (proper fraction)
(v) $\frac{7}{12}$ (proper fraction)
(vi) 8 (whole number)
(vii) 11 (whole number)
(viii) $\frac{3}{2}$ (improper fraction) (ix) $\frac{4}{9}$ (proper fraction)
(x) 1 (whole number)
3. (i) $\frac{7}{6}$
(ii) $\frac{4}{45}$
(iii) $\frac{6}{91}$
(iv) $\frac{13}{9}$
(v) $\frac{7}{8}$
(vi) $\frac{31}{49}$
4. (i) $\frac{4}{5}$
(ii) $\frac{2}{3}$
(iii) $\frac{3}{8}$
(iv) $\frac{35}{9}$
(v) $\frac{21}{16}$
(vi) $\frac{4}{15}$ (vii) $\frac{48}{25}$
(viii) $\frac{11}{6}$
(ix) 3
(x) $\frac{9}{64}$

Exercise 2.5

1. (i) 0.5
(ii) 0.7
(iii) 7
(iv) 1.49
(v) 2.30
2. (i) Rs 0.07
(ii) Rs 7.07
(iii) Rs 77.77
(iv) Rs 0.50
(v) Rs 2.35
3. (i) $0.05 \mathrm{~m}, 0.00005 \mathrm{~km}$
(ii) $3.5 \mathrm{~cm}, 0.035,0.000035 \mathrm{~km}$
4. (i) 0.2 kg
(ii) $3.470 \mathrm{~kg} \quad$ (iii) 4.008 kg
5. (i) $2 \times 10+0 \times \frac{1}{10}+3 \times \frac{1}{100}$
(ii) $2 \times 1+0 \times \frac{1}{10}+3 \times \frac{1}{100}$
(iii) $2 \times 100+0 \times 10+0 \times 1+0 \times \frac{1}{10}+3 \times \frac{1}{100}$
(iv) $2 \times 1+0 \times \frac{1}{10}+3 \times \frac{1}{10}+4 \times \frac{1}{100}$
(vi) 0.88
6. (i) Ones (ii) Hundredths (iii) Tenths (iv) Hundredths (v) Thousandths
7. Aatif travelled more by 0.9 km or $900 \mathrm{~m} \quad 8$. Sabina bought more fruits
9.14 .6 km

Exercise 2.6

1. (i) 1.2
(ii) 36.8
(iii) 13.55
(iv) 80.4
(v) 0.35
(vi) 844.08
$\begin{array}{llll}\text { (vii) } 1.72 & \text { (viii) } 41.40 & \text { (ix) } 2508.84 & \text { (x) } 1869.2\end{array}$
2. (i) $17.1 \mathrm{~cm}^{2} \quad$ (ii) Area $=156.25$ sq. cm
3. (i) 13
(ii) 368
(iii) 1537
(iv) 1680.7
(v) 3110
(vi) 15610
(vii) 362
viii) 4307
(ix) 5
(x) 0.8
(xi) 90
(xii) 30
4. 553 km
5. (i) 0.75
(ii) 5.17
(iii) 636.36
(iv) 4.03
(v) 0.025
(vi) 1.68
(vii) 0.0214 (viii) 10.5525 (ix) 1.0101
(x) 110.011

Exercise 2.7

1. (i) 0.2
(ii) 0.07
(iii) 0.62
(iv) 10.9
(v) 162.8
(vi) 2.07
(vii) 0.99 (viii) 0.16
(ix) 640
(x) 18.4
2. (i) 0.48
(ii) 5.25
(iii) 0.07
(iv) 3.31
(v) 27.223 (vi) 0.056
(vii) 0.397 (viii) 0.3069
(ix) 0.433
(x) 0.05
3. (i) 0.027
(ii) 0.003
(iii) 0.0078
(iv) 4.326
(v) 0.236
(vi) 0.9853
4. (i) 0.0079
(ii) 0.0263
(iii) 0.03853
(iv) 0.1289
(v) 0.0005
5. (i) 2
(i) 180
(iii) 6.5
(iv) 44.2
(v) 2
(vi) 31
(vii) 510
(viii) 27
(ix) 2.1
6. 18 km
7. 4.575

Exercise 3.1

1.

Marks	Tally Marks	Number of Students		
1		2		
2		3		
3	$1 \mid$	3		
4	-	7		
5	$x 1$	6		
6		7		
7		5		
8		4		
9	$\\|\\|$	3		

2.

Sweet	Tally mark	Number of Students
Ladoo		11
Barfi		3
Jalebi		7
Rasgulla		9

(b) Ladoo
3. (i) Village D
(ii) Village C
(iii) 3
(iv) 28
4. (a) 14
(b) Sunday
(c) Rs 180
(d) Rs 860
(e)) 10
5. (a) VII
(b) No
(c) 12
6. (a) Saleem
(b) 700
(c) Aslam, Saleem, Muzamil

Exercise 3.2

1.

(a) 6
(b) Village B
(c) Village C
2.

A (a) 6
(b) 5 complete and 1 incomplete

B Second

Exercise 3.3
2.

Marks	Tally Marks	Frequency	
1		1	
2		2	
3		1	
4		3	
5	\mathbb{N}	5	
6	$\\|$	4	
7		2	
8		1	
9		1	

(i) 9
(ii) 1
(iii) 8
(iv) 5
$3.24 .50 \quad 5$. (i) 12.5 (ii) 3 (iii) $\frac{0+8+6+4}{4}=\frac{18}{4}$ or $\frac{9}{2} \quad$ (iv) A
6. (i) Highest marks $=95$, Lowest marks $=39$ (ii) 56 (iii) 73 7. 2058
8. (i) 20.5 (ii) 5.9 (iii) 5
9. (i) 151 cm (ii) 128 cm (iii) 23 cm (iv) $141.4 \mathrm{~cm} \quad$ (v) 5

Exercise 3.4

1. Mode $=20$, Median $=20$, Yes.
2.7
2. 13, 19
3. Mean $=11.66$, Median $=12, \operatorname{Mode}=11$ and 12 No, they are not equal
4. (i) Mode $=36$ and 37
(ii) Median $=37$
(iii) Mean $=37$
5. Mean $=34.9 \quad$ Mode $=10$ and $15 \quad$ Median $=15$ No, they are not same
6. (i) T
(ii) F
(iii) T
(iv) F

Exercise 3.5

1. (a) Cat (b) 8
2. (i) Maths (ii) S. Science (iii) Hindi
3. (ii) Cricket (iii) Watching sports
4. (i) Jammu (ii) Jammu, Bangalore
(iii) Bangalore and Jaipur or Bangalore and Ahmedabad (iv) Mumbai

Exercise 3.6

1. (i) Certain to happen (ii) Can happen but not certain (iii) Impossible
(iv) Can happen but not certain
(v) Can happen but not certain
2. (i) $\frac{1}{6}$
(ii) $\frac{1}{6}$
3. $\frac{1}{2}$

Exercise 4.1

1. (i) No
(ii) No
(iii) Yes
(iv) No
(v) Yes (vi) No
(vii) Yes (viii) No (ix) No
(x) No
(xi) No
2. (a) No
(b) Yes
(c) Yes
(d) No
(e) Yes
(f) Yes
3. (i) Put $\mathrm{p}=1,2,3, \ldots \ldots$
(ii) Put $\mathrm{x}=1,2,3,4,5,6 \ldots$.
4. (i) $x+4=9$
(ii) $y-2=8$
(iii) $10 a=70$
(iv) $\frac{b}{5}=6$
(v) $\frac{3 t}{4}=15$
(vi) $7 m+7=77$
(vii) $\frac{x}{4}-4=4$
(viii) $6 y-6=60$
(ix) $\frac{z}{3}+3=30$
(ix) $4-3 x=7$
(xi) $\frac{3}{4} x+6=9$
5. (i) Four added to a number gives 6
(ii) 7 taken from a number gives 10
(iii) Twice a number equals 11
(iv) 3 divided by a number gives 12
(v) 3 added to 4 times a number gives 7
(vi) 7 subtracted from three-fourth of a number gives 15
(vii) 3 subtracted from k of a number gives 10
(viii) Add 2 to half of a number p to get 8
6. (i) $5 m+7=37$
(ii) $3 y+4=49$
(iii) $2 l+7=87$
(iv) $4 \mathrm{~b}=180^{\circ}$

Exercise 4.2

1. (a) Add 1 to both sides; $x=1$
(b) Subtract 1 from both sides; $x=-1$
(c) Add 1 to both sides; $x=6$
(d) Subtract 6 from both sides; $x=-4$
(e) Add 4 to both sides; $y=-3$
(f) Add 4 to both sides; $y=8$
(g) Subtract 4 from both sides; $y=0$
(h) Multiply both sides by $2 ; b=12$
2. (a) Divide both sides by $3 ; l=14$
(b) Multiply both sides by $2 ; \mathrm{b}=12$
(c) Multiply both sides by 7; $p=28$
(d) Divide both sides by $4 ; x=\frac{25}{4}$
(e) Divide both sides by $8 ; y=\frac{36}{8}$
(f) Multiply both sides by $3 ; z=\frac{15}{4}$
(g) Multiply both sides by $5 ; a=\frac{7}{3}$
(h) Divide both sides by $20 ; t=\frac{1}{2}$
3. (a) Step1: Add 2 to both sides
(b) Step 1: Subtract 7 from both sides
Step 2: Divide both sides by 3; $n=16$
Step 2: Divide both sides by $5 ; m=2$
(c) Step 1: Multiply both sides by 3
(d) Step 1: Multiply both sides 10
Step 2: Divide both sides by $20 ; p=6$
Step 2: Divide both sides by $3 ; p=20$
4. (a) $p=10$
(b) $p=9$
(c) $p=20$
(d) $p=-15$
(e) -21
(f) $\frac{-7}{2}$
(g) 1
(h) -2
(i) 5
(j) 5
(k) 3

Exercise 4.3

1. (a) $\frac{2}{3}$
(b) -2
(c) 45
(d) -21
(e) -3
(f) $\frac{1}{2}$
(g) $\frac{27}{2}$
2. (a) 7
(b) 3
(c) 0
(d) 0
(e) -5
(f) 1
3. (a) $\frac{27}{8}$
(b) $\frac{3}{4}$
(c) 2
(d) 5
(e) $\frac{9}{4}$

Exercise 4.4

1. (a) $\frac{a}{5}$
(b) 10
(c) $\frac{3}{4} y+3=21 ; y=24$
(d) $2 m-11=15 ; m=13$
(e) $50-3 x=8 ; x=14$
(f) $\frac{x+19}{5}=8 ; x=21$
(g) 8
2. (a) Lowest score $=40$
(b) 70° each
(c) Dhoni: 132 runs, Yuvraj: 66 runs
(d) 13
3. (i) $6 \quad$ (ii) 15 years \quad (iii) 25
4. 30

Exercise 5.1

1. (i) 70°
(ii) 27°
(iii) 33°
2. (i) 75°
(ii) 93°
(iii) 26°
3. (i) supplementary
(ii) complementary
(iii) supplementary
(iv) supplementary
(v) complementary
(vi) complementary
4. $45^{\circ} \quad 5.90^{\circ} \quad$ 6. $\angle 2$ will increase with the same measure as the decrease in $\angle 1$.
5. (i) No
(ii) No
(iii) Yes
6. Less than 45°
7. (i) Yes
(ii) No
(iii) Yes
(iv) Yes
(v) Yes (vi) $\angle \mathrm{COB}$
8. $\angle 1, \angle 4 ; \angle 5, \angle 2+\angle 3$
(ii) $\angle 1, \angle 5 ; \angle 4, \angle 5$
9. $\angle 1$ and $\angle 2$ are not adjacent angles because their vertex is not common.
10. (i) $x=55^{\circ}, y=125^{\circ}, z=125^{\circ}$
(ii) $x=115^{\circ}, y=140^{\circ}, z=40^{\circ}$
11. (i) 90°
(ii) 180°
(iii) supplementary
(iv) linear pair
(v) equal
(vi) obtuse angles
12. (i) $\angle \mathrm{AOD}, \angle \mathrm{BOC}$
(ii) $\angle \mathrm{EOA}, \angle \mathrm{AOB}$
(iii) $\angle \mathrm{EOB}, \angle \mathrm{EOD}$
(iv) $\angle \mathrm{EOA}, \angle \mathrm{EOC}$
(v) $\angle \mathrm{AOB}, \angle \mathrm{AOE} ; \angle \mathrm{AOE}, \angle \mathrm{EOD} ; \angle \mathrm{EOD}, \angle \mathrm{COD}$

Exercise 5.2

1. (i) Corresponding angle property
(ii) Alternate interior angle property
(iii) Interior angles on the same of the transversal are supplementary
2. (i) $\angle 1, \angle 5 ; \angle 2, \angle 6 ; \angle 3, \angle 7 ; \angle 4, \angle 8$
(ii) $\angle 2, \angle 8 ; \angle 3, \angle 5$
(iii) $\angle 2, \angle 5 ; \angle 3, \angle 8$
(iv) $\angle 1, \angle 3 ; \angle 2, \angle 4 ; \angle 5, \angle 7 ; \angle 6, \angle 8$
3. $a=55^{\circ} ; b=125^{\circ} ; c=55^{\circ} ; d=125^{\circ} ; e=55^{\circ} ; f=55^{\circ}$
4. $x=70^{\circ}$
(ii) $x=100^{\circ}$
5. (i) $\angle \mathrm{DGC}=70^{\circ}$
(ii) $\angle \mathrm{DEF}=70^{\circ}$
6. (i) l is not parallel to m
(ii) l is not parallel to m
(iii) l is parallel to m
(iv) l is not parallel to m

Exercise 6.1

1. Altitude, Median, No.

Exercise 6.2

1. (i) 120°
(ii) 110°
(iii) 70°
(iv) 120°
(v) 100°
(vi) 90°
2. (i) 65°
(ii) 30°
(iii) 35°
(iv) 60°
(vi) 40°

Exercise 6.3

1. (i) 70°
(ii) 60°
(iii) 40°
(iv) 65°
(v) 60°
(vi) 30°
2. (i) $x=70^{\circ}, y=60^{\circ}$
(ii) $x=50^{\circ}, y=80^{\circ}$
(iii) $x=110^{\circ}, y=70^{\circ}$
(iv) $x=60^{\circ}, y=90^{\circ}$
(v) $x=45^{\circ}, y=90^{\circ}$
(vi) $\mathrm{x}=60^{\circ}$. $\mathrm{Y}=60^{\circ}$

Exercise 6.4

1. (i) Not possible
(ii) Possible
(iii) Not possible
2. (i) Yes
(ii) Yes
(iii) Yes
3. Yes
4. Yes
5. No
6. Between 3 and 27

Exercise 6.5

1. $\sqrt{41}$
2. 4 cm
3.9 m
3. (i) and (iii)
4. 52 m
5. (ii) 7.98 cm
8.68 cm

Exercise 7.1

1. (a) they have the same length
(b) 70°
(c) $\mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{B}$
2. $\angle \mathrm{A} \leftrightarrow \angle \mathrm{F}, \angle \mathrm{B} \leftrightarrow \angle \mathrm{E}, \angle \mathrm{C} \leftrightarrow \angle \mathrm{D}, \quad \overline{\mathrm{AB}} \leftrightarrow \overline{\mathrm{FE}}, \overline{\mathrm{BC}} \leftrightarrow \overline{\mathrm{ED}}, \overline{\mathrm{AC}} \leftrightarrow \overline{\mathrm{FD}}$
3. (i) $\angle \mathrm{C}$
(ii) $\overline{\mathrm{CA}}$
(iii) $\angle \mathrm{A}$
(iv) $\overline{\mathrm{BA}}$

Exercise 7.2

1. (a) SSS Congruence criterion
(b) SAS Congruence criterion
(c) ASA Congruence criterion
(d) RHS Congruence criterion
2. (a) (i) PE
(ii) En
(iii) PN
(b) (i) EN
(ii) AT
(c) (i) $\angle \mathrm{RAT}=\angle \mathrm{EPN}$
(ii) $\angle \mathrm{ATR}=\angle \mathrm{PNE}$
3. (i) Given
(ii) Given
(iii) Common
(iv) SAS Congruence criterion
4. No \quad 5. $\Delta \mathrm{WON}, \triangle \mathrm{TPQ}$
5. $\mathrm{BC}=\mathrm{QR}$, ASA Congruence criterion

Exercise 8.1

1. (a) $10: 1$
(b) $500: 7$
(c) $100: 3$
(d) $20: 1$
2. 12 computers
3. (i) Rajasthan : 190 people; UP : 830 people
(ii) Rajasthan

Exercise 8.2

1. (a) 12.5%
(b) 125%
(c) 7.5%
(d) $28 \frac{4}{7} \%$
2. (a) 65%
(b) 210%
(c) 2%
(d) 1235%
3. (i) $\frac{1}{4} ; 25 \%$
(ii) $\frac{3}{5} ; 60 \%$
(iii) $\frac{3}{8} ; 37.5 \%$
4. (a) 37.5
(b) $\frac{3}{5}$ minute or 36 seconds
(c) Rs 500
(d) 0.75 kg or 750 g
5. (a) 12000
(b) Rs 9,000
(c) 1250 km
(d) 20 minutes
(e) 500 litres
6. (a) $0.25 ; \frac{1}{4}$
(b) $1.5 ; \frac{3}{2}$
(c) $0.2 ; \frac{1}{5}$
(d) $0.05 ; \frac{1}{20}$
7. 30%
8. $40 \% ; 6000$
9. Rs 4,000
10. 5 matches

Exercise 8.3

1. (a) Profit $=$ Rs 75 ; Profit $\%=30$
(b) Profit = Rs 1500; Profit $\%=12.5$
(c) Profit = Rs 500; Profit $\%=20$
(d) Loss $=$ Rs 100; Loss $\%=40$
2. (a) $75 \% ; 25 \% ~(b) ~ 20 \%, 30 \%, 50 \% ~(c) ~(c) ~ 20 \% ; 80 \% ~(d) ~ 12.5 \% ; 25 \% ; 62.5 \%$
3. 2%
4. $5 \frac{5}{7} \%$
5. Rs 12,000
6. Rs 16,875
7. (i) 12% (ii) 25 g
8. Rs 233.75
9. (a) Rs 1,632
(b) Rs 8,625
10. 0.25%
11. Rs 500

Exercise 9.1

1. (i) $\frac{-2}{3}, \frac{-1}{2}, \frac{-2}{5}, \frac{-1}{3}, \frac{-2}{7}$
(ii) $\frac{-3}{2}, \frac{-5}{3}, \frac{-8}{5}, \frac{-10}{7}, \frac{-9}{5}$
(iii) $\frac{-35}{45}\left(=\frac{-7}{9}\right), \frac{-34}{45}, \frac{-33}{45}\left(=\frac{-11}{15}\right), \frac{-32}{45}, \frac{-31}{45}$
(iv) $\frac{-1}{3}, \frac{-1}{4}, 0, \frac{1}{3}, \frac{1}{2}$
2. (i) $\frac{-15}{25}, \frac{-18}{30}, \frac{-21}{35}, \frac{-24}{40}$
(ii) $\frac{-4}{16}, \frac{-5}{20}, \frac{-6}{24}, \frac{-7}{28}$
(iii) $\frac{5}{-30}, \frac{6}{-36}, \frac{7}{-42}, \frac{8}{-48}$
(iv) $\frac{8}{-12}, \frac{10}{-15}, \frac{12}{-18}, \frac{14}{-21}$
3. (i) $\frac{-4}{14}, \frac{-6}{21}, \frac{-8}{28}, \frac{-10}{35}$
(ii) $\frac{10}{-6}, \frac{15}{-9}, \frac{20}{-12}, \frac{25}{15}$
(iii) $\frac{8}{18}, \frac{12}{27}, \frac{16}{36}, \frac{28}{63}$
4. (i)

(ii)

(iii)

(iv)

5. P represents $\frac{7}{3} \quad \mathrm{Q}$ represents $\frac{8}{3} \quad \mathrm{R}$ represents $\frac{-4}{3} \quad \mathrm{~S}$ represents $\frac{-5}{3}$
6. (i), (iii), (iv), (v)
7. (i) $\frac{-4}{3}$
(ii) $\frac{5}{9}$
(iii) $\frac{-11}{18}$
(iv) $\frac{-4}{5}$
8. (i) $<$
(ii) $<$
$($ iii $)=($ iv $)>$
(v) $>$
$(\mathrm{vi})=\quad(\mathrm{vii})>$
9. (i) $\frac{5}{2}$
(ii) $\frac{-5}{6}$
(iii) $\frac{2}{-3}$
(iv) $\frac{1}{4}$
(v) $-3 \frac{2}{7}$
10. (i) $\frac{-3}{5}, \frac{-2}{5}, \frac{-1}{5}$
(ii) $\frac{-4}{3}, \frac{-1}{3}, \frac{-2}{9}$
(iii) $\frac{-3}{2}, \frac{-3}{4}, \frac{-3}{7}$

Exercise 9.2

1. (i) $\frac{-3}{2}$
(ii) $\frac{34}{15}$
(iii) $\frac{17}{30}$
(iv) $\frac{82}{99}$
(v) $\frac{-26}{57}$
(vi) $\frac{-2}{3}$
(vii) $\frac{34}{15}$
2. (i) $\frac{-13}{72}$
(ii) $\frac{23}{63}$
(iii) $\frac{1}{195}$
(iv) $\frac{-89}{88}$
(v) $\frac{-73}{9}$
3. (i) $\frac{-63}{8}$
(ii) $\frac{-27}{10}$
(iii) $\frac{-54}{55}$
(iv) $\frac{-6}{35}$
(v) $\frac{6}{55}$
(vi) 1
4. (i) -6
(ii) $\frac{-3}{10}$
(iii) $\frac{4}{15}$
(iv) $\frac{-1}{6}$
(v) $\frac{-14}{13}$
(vi) $\frac{91}{24}$
(vii) $\frac{-15}{4}$

Exercise 11.1

1. (i) $150000 \mathrm{~m}^{2}$
(ii) Rs 1,500,000,000
2. $6400 \mathrm{~m}^{2} 3.20 \mathrm{~m}$
3. $15 \mathrm{~cm} ; 525 \mathrm{~cm}^{2}$
4. 40 m
6.31 cm ; square
5. $35 \mathrm{~cm} ; 1050 \mathrm{~cm}^{2}$
6. Rs 284

Exercise 11.2

1. (a) $28 \mathrm{~cm}^{2}$
(b) $15 \mathrm{~cm}^{2}$
(c) $8.75 \mathrm{~cm}^{2}$
(d) $24 \mathrm{~cm}^{2}$
(e) $8.8 \mathrm{~cm}^{2}$
2. (a) $6 \mathrm{~cm}^{2}$
(b) $8 \mathrm{~cm}^{2}$
(c) $6 \mathrm{~cm}^{2}$
(d) $3 \mathrm{~cm}^{2}$
3. (a) 12.3 cm
(b) 10.3 cm
(c) 5.8 cm
(d) 1.05 cm
4. (a) 11.6 cm
(b) 80 cm
(c) 15.5 cm
5. (a) $91.2 \mathrm{~cm}^{2}$
(b) 11.4 cm
6. length of $\mathrm{BM}=30 \mathrm{~cm}$; length of $\mathrm{DL}=42 \mathrm{~cm}$
7. Area of $\triangle \mathrm{ABC}=30 \mathrm{~cm}^{2}$; length of $\mathrm{AD}=\frac{60}{13} \mathrm{~cm}$
8. Area of $\triangle \mathrm{ABC}=27 \mathrm{~cm}^{2}$; length of $\mathrm{CE}=7.2 \mathrm{~cm}$

Exercise 11.3

1. (a) 88 cm
(b) 176 mm
(c) 132 cm
2. (a) $616 \mathrm{~mm}^{2}$
(b) $1886.5 \mathrm{~m}^{2}$
(c) $\frac{550}{7} \mathrm{~cm}^{2}$
3. $24.5 \mathrm{~m} ; 1886.5 \mathrm{~m}^{2}$
4. 4.71 m ; Rs 70.65
$9.7 \mathrm{~cm} ; 154 \mathrm{~cm}^{2} ; 11 \mathrm{~cm}$; circle
$12.5 \mathrm{~cm} ; 78.5 \mathrm{~cm}^{2}$
5. $119.32 \mathrm{~m} ; 56.52 \mathrm{~m}$
6. 132 m ; Rs 528
7.25 .7 cm
7. $536 \mathrm{~cm}^{2}$
8. $879.20 \mathrm{~m}^{2}$
9. 200 times
10. $21.98 \mathrm{~cm}^{2}$
11. Rs 30.14 (approx)
12. $23.44 \mathrm{~cm}^{2}$
13. Yes
14. 94.2 cm

Exercise 11.4

1. $1750 \mathrm{~m}^{2} ; 0.0675 \mathrm{ha}$
2. $1176 \mathrm{~m}^{2}$
3. $30 \mathrm{~cm}^{2}$
4. (i) $63 \mathrm{~m}^{2}$
(ii) Rs 12,600
5. (i) $116 \mathrm{~m}^{2}$
(ii) Rs 31,360
6. $0.99 \mathrm{ha} ; 1.2$ ha
7. (i) $441 \mathrm{~m}^{2}$
(ii) Rs 48,510
8. Yes, 9.12 m cord is left
9. (i) $50 \mathrm{~m}^{2}$
(ii) $12.56 \mathrm{~m}^{2}$
(iii) $37.44 \mathrm{~m}^{2}$
(iv) 12.56 m
10. (i) $110 \mathrm{~m}^{2}$
(ii) $150 \mathrm{~cm}^{2} ; 11.66 \mathrm{~cm}^{2}$

Exercise 12.1

1. (i) $y-z$
(ii) $\frac{1}{2}(+y)$
(iii) z^{2}
(v) $x^{2}+y^{2}$
(vii) $10-y z$
(viii) $a b-(a+b)$
(ix) $\frac{x+y}{z}$
(x) $p+q-p q$
(vi) $5+3 \mathrm{mn}$
2.

(i)

(b)

(c) $y-y^{3}$

(d)

(e)

(ii)

	Expression	Terms	Factors
(a)	$-4 x+5$	$-4 x$	$-4, x$
		5	5
(b)	$-4 x+5 y$	$-4 x$	$-4, x$
(c)	$5 y+3 y^{2}$	$5 y$	$5, y$
		$3 y^{2}$	$5, y$
(d)	$x y+2 x^{2} y^{2}$	$2 x^{2} y^{2}$	$2, y, y$
		$p q$	x, y
(e)	$p q+q$	q	p, q, y, y
			q
(f)	$1.2 a b-24 b+3.6 a$	$-24 b$	$-24, b$
		$3.6 a$	$3.6, a$
(g)	$\frac{3}{4} x+\frac{1}{4}$	$\frac{3}{4} x$	$\frac{3}{4}, x$
		$\frac{1}{4}$	$\frac{1}{4}$
(h)	$0.1 p^{2}+0.2 q^{2}$	$0.1 p^{2}$	$0.1, p, p$
		$0.2 q^{2}$	$0.2, q, q$

3.

	Expression	Terms	Coefficients
(i)	$5-3 t^{2}$	$-3 t^{2}$	-3
(ii)	$1+t+t^{2}+t^{3}$	t	1
		t^{2}	1
		t^{3}	1
(iii)	$x+2 x y+3 y$	x	1
		$2 x y$	2
(iv)	$100 \mathrm{~m}+1000 \mathrm{n}$	100 m	100
		1000 n	1000
(v)	$-p^{2} q^{2}+7 p q$	$-p^{2} q^{2}$	-1
		$7 p q$	7
			1.2 a
(iv)	$1.2 \mathrm{a}+0.8 \mathrm{~b}$	0.8 b	1.2
		$3.14 r^{2}$	0.8
ii)	$3.14 r^{2}$	$2 b$	2.14
		$2(l+\mathrm{b})$	$2 l$

	$0.1 y+0.01 y^{2}$	$0.1 y$	0.1
		$0.01 y^{2}$	0.01

4. (a)

	Expression	Terms with \boldsymbol{x}	Coefficients of \boldsymbol{x}
(i)	$y^{2} x+y$	$y^{2} x$	y^{2}
(ii)	$13 y^{2}-8 y x$	$-8 y x$	$-8 y$
(iii)	$x+y+2$	x	1
(iv)	$5+z+z x$	$z x$	z
(v)	$1+x+x y$	x	1
		$x y$	y
(vi)	$12 x y^{2}+25$	$12 x y^{2}$	$12 y^{2}$
(vii)	$7+x y^{2}$	$x y^{2}$	y^{2}

(b)

	Expression	Terms with y^{2}	Coefficients of y^{2}
(i)	$8-x y^{2}$	$-x y^{2}$	$-x$
(ii)	$5 y^{2}+7 x$	$5 y^{2}$	5
(iii)	$2 x^{2}-15 x y^{2}+7 y^{2}$	$-15 x y^{2}$ $7 y^{2}$	$-15 x$ 7

5. (i) binomial	(ii) monomial	(iii) trinomial	(iv) monomial
(v) trinomial	(vi) binomial	(vii) binomial	(viii) monomia
(ix) trinomial	(x) binomial	(xi) binomial	(xii) trinomial
(xiii) trinomial	(xiv) Monomial	(xv) Monomial	
6. (i) like	(ii) like	(iii) unlike	(iv) like
(v) unlike	(vi) unlike	(vii) like	(viii) unlike
(ix) unlike	(x) like		

7. (a) $-x y^{2}, 2 x y^{2} ;-4 y x^{2}, 20 x^{2} y ; 8 x^{2},-11 x^{2},-6 x^{2} ; 7 y, y ; 100 x, 3 x ;-11 y x, 2 x y$
(b)
$10 p q,-7 q p, 78 q p ; 7 p, 2405 p ; 8 q,-100 q ; p^{2} q^{2}, 12 q^{2} p^{2} ;-23,41 ;-5 p^{2}, 701 p^{2} ; 13 p^{2} q ; 13 p^{2} q, q p^{2}$

Exercise 12.2

1. (i) $8 b-32$
(ii) $7 z^{3}+12 z^{2}-20 z$
(iii) $p-q$
(iv) $a+a+3$
(v) $8 x^{2} y+8 x y^{2}-4 x^{2}-7 y^{2}$
(vi) $4 y^{2}-3 y$
(vii) $9 x^{2} y-8 x y^{2}$
2. (i) $2 m n$
(ii) $-5 t z$
(iii) $12 m n-4$
(iv) $5 a+5 b-2 a b$
(v) $7 x+5$
(vi) $3 m-4 n-3 m n-3$
(viii) $5 p q+20$
(ix) 0
(x) $-x^{2}-y^{2}-1$
(xi) $3 x y^{2}+4 x^{2} y+6$
3.(i) $6 y^{2}$
(ii) $-18 x y$
(iii) $2 b$
(iv) $5 a+5 b-2 a b$
(v) $5 m^{2}-8 m n+8$
(vi) $x^{2}-5 x-5$
(vii) $10 a b-7 a^{2}-7 b^{2}$
(viii) $8 p^{2}+8 q^{2}-5 p q$
(ix) 0
(x) $-9 x+9 y$
3. (a) $x^{2}+2 x y-y^{2}$
(b) $5 a+b-6$
4. $4 x^{2}-3 y^{2}-y^{2}$
5. (a) $-y+11$
(b) $2 x+4$
6. $17 x y-6 x+9 y+1$

Exercise 12.3

1. (i) 0
(ii) 1
(iii) - 1
(iv) 1
(v) 1
2. (i) -1
(ii) - 13
(iii) 3
(iv) 12
(v) 0
3. (i) -9
(ii) 3
(iii) 0
(iv) 4
4. (i) 8
(ii) 4
(iii) 0
(iv) 16
(v) 12
5. (i) -2
(ii) 2
(iii) 0
(iv) 2
6. (i) $5 x-13 ;-3$
(ii) $8 x-1 ; 15$
(iii) $11 x-10 ; 12 \quad$ (iv) $11 x+7 ; 29$
(v) 0
7. (i) $2 x+4 ; 10$
(ii) $-4 x+6 ;-6$
(iii) $-5 a+6 ; 11$
(iv) $3 a-2 b-9 ;-8$
(v) -2
8. (i) 1000
(ii) 20
9. -5
10. $2 a^{2}+a b+3 ; 38$
11. $x=1$

Exercise 12.4

1.

Symbol	Number of Digits	Number of Segments

(iv) $7 n+20 \rightarrow 5^{\text {th }}: 55$;
$10^{\text {th }}: 90$;
$100^{\text {th }}: 720$
(v) $n^{2}+1 \rightarrow 5^{\text {th }}: 26$;

Exercise 13.1

1. (i) 64
(ii) 729
(iii) 121
(iv) 625
2. (i) 6^{4}
(ii) t^{2}
(iii) b^{4}
(iv) $5^{2} \times 7^{3}$
(v) $2^{2} \times a^{2}$
(vi) $a^{3} \times c^{4} \times d$
3. (i) 2^{9}
(ii) 7^{3}
(iii) 3^{6}
(iv) 5^{5}
4. (i) 3^{4}
(ii) 3^{5}
(iii) 2^{8}
(iv) 2^{100}
(v) 2^{10}
5. (i) $2^{3} \times 3^{4}$
(ii) 5×3^{4}
(iii) $2^{2} \times 3^{2} \times 5$
(iv) $2^{4} \times 3^{2} \times 5^{2}$
6. (i) 2000
(ii) 196
(iii) 40
(iv) 768
(v) 0
(vi) 675
(vii) 144
(viii) 90000
7. (i) -64
(ii) 24
(iii) 225
(iv) 8000
8. (i) $2.7 \times 10^{12}>1.5 \times 10^{8}$
(ii) $4 \times 10^{14}<3 \times 10^{17}$

Exercise 13.2

1. (a) 7
(b) 11
(c) 11
(d) 3
(e) 6
(f) (4)
(g) (6)
(h) (4)
2. (a) $\frac{32}{243}$
(b) $\frac{9}{16}$
(c) $\frac{1}{16}$
(d) $\frac{1}{64}$
(e) 3^{3}
(f) 3° or 1
(g) a^{2}
(h) $\left(\frac{2}{3}\right)^{8}$
(i) 3
(j) 1
3. (i) False; $10 \times 10^{11}=10^{12}$ and $\left\langle 00^{\mathrm{N}}=10^{22} \quad\right.$ (ii) False; $2^{3}=8,5^{2}=25$
(iii) False; $6^{5}=2^{5} \times 3^{5} \quad$ (iv) True; $3^{0}=1,\left(000^{7}\right)=1$
4. (i) $2^{8} \times 3^{4}$
(ii) $2 \times 3^{3} \times 5$
(iii) $3^{6} \times 2^{6}$
(iv) $2^{8} \times 3$
5. (i) 98
(ii) $\frac{5 t^{4}}{8}$
(iii) 1

Exercise 13.3

1. $279404=2 \times 10^{5}+7 \times 10^{4}+9 \times 10^{3}+4 \times 10^{2}+0 \times 10^{1}+4 \times 10^{0}$

$$
\begin{aligned}
& 3006194=3 \times 10^{6}+0 \times 10^{5}+0 \times 10^{4}+6 \times 10^{3}+1 \times 10^{2}+9 \times 10^{1}+4 \times 10^{0} \\
& 2806196=2 \times 10^{6}+8 \times 10^{5}+0 \times 10^{4}+6 \times 10^{3}+1 \times 10^{2}+9 \times 10^{1}+6 \times 10^{0} \\
& 120719=1 \times 10^{5}+2 \times 10^{4}+0 \times 10^{3}+7 \times 10^{2}+1 \times 10^{1}+9 \times 10^{0} \\
& 20068=2 \times 10^{4}+0 \times 10^{3}+0 \times 10^{2}+6 \times 10^{1}+8 \times 10^{0}
\end{aligned}
$$

2. (a) 86045
(b) 405302
(c) 30705
(d) 900230
3. (i) 5×10^{7}
(ii) 7×10^{6}
(iii) 3.1865×10^{9}
(iv) 3.90878×10^{5}

(v) 3.90878×10^{4}

(v) 3.90878×10^{3}
4. (a) $3.84 \times 10^{8} \mathrm{~m}$
(b) $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(c) $1.2756 \times 10^{7} \mathrm{~m}$
(d) $1.4 \times 10^{9} \mathrm{~m}$
(e) 1×10^{11}
(f) 1.2×10^{10} years
(g) $3 \times 10^{20} \mathrm{~m}$
(h) 6.023×10^{22}
(i) 1.353×10^{9}
(j) 1.027×10^{9}

